Bài 3 trang 93 SGK Toán 11 tập 2 – Chân trời sáng tạo


Cho (A) và (B) là hai biến cố độc lập.

Đề bài

Cho \(A\) và \(B\) là hai biến cố độc lập.

a) Biết \(P\left( A \right) = 0,7\) và \(P\left( B \right) = 0,2\). Hãy tính xác suất của các biến cố \(AB,\bar AB\) và \(\bar A\bar B\).

b) Biết \(P\left( A \right) = 0,5\) và \(P\left( {AB} \right) = 0,3\). Hãy tính xác suất của các biến cố \(B,\bar AB\) và \(\bar A\bar B\).

Phương pháp giải - Xem chi tiết

Sử dụng quy tắc nhân xác suất: Nếu hai biến cố \(A\) và \(B\) độc lập thì \(P\left( {AB} \right) = P\left( A \right)P\left( B \right)\).

Lời giải chi tiết

a) \(P\left( {\bar A} \right) = 1 - P\left( A \right) = 1 - 0,7 = 0,3;P\left( {\bar B} \right) = 1 - P\left( B \right) = 1 - 0,2 = 0,8\)

\(\begin{array}{l}P\left( {AB} \right) = P\left( A \right)P\left( B \right) = 0,7.0,2 = 0,14\\P\left( {\bar AB} \right) = P\left( {\bar A} \right)P\left( B \right) = 0,3.0,2 = 0,06\\P\left( {\bar A\bar B} \right) = P\left( {\bar A} \right)P\left( {\bar B} \right) = 0,3.0,8 = 0,24\end{array}\)

b) \(P\left( {\bar A} \right) = 1 - P\left( A \right) = 1 - 0,5 = 0,5\)

\(\begin{array}{l}P\left( B \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,3}}{{0,5}} = 0,6 \Rightarrow P\left( {\bar B} \right) = 1 - P\left( B \right) = 1 - 0,6 = 0,4\\P\left( {\bar AB} \right) = P\left( {\bar A} \right)P\left( B \right) = 0,5.0,6 = 0,3\\P\left( {\bar A\bar B} \right) = P\left( {\bar A} \right)P\left( {\bar B} \right) = 0,5.0,4 = 0,2\end{array}\)


Bình chọn:
4.5 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí