Bài 3 trang 7 SGK Hình học 10


Giải bài 3 trang 7 SGK Hình học 10. Cho tứ giác ABCD. Chứng minh rằng tứ giác đó là hình bình hành khi và chỉ khi

Đề bài

Cho tứ giác \(ABCD\). Chứng minh rằng tứ giác đó là hình bình hành khi và chỉ khi \(\overrightarrow{AB}\) = \(\overrightarrow{DC}\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Dấu hiệu và tính chất của hình bình hành: Hai cặp cạnh đối vừa song song vừa bằng nhau.

Lời giải chi tiết

Ta chứng minh hai mệnh đề:

*) Nếu \(\overrightarrow{AB}= \overrightarrow{DC}\) thì \(ABCD\) là hình bình hành.

Ta có:

\(\overrightarrow{AB} = \overrightarrow{DC}  nên \left | \overrightarrow{AB} \right |= \left | \overrightarrow{DC} \right |\) và \(\overrightarrow{AB}\) và \(\overrightarrow{DC}\) cùng hướng.

\(\overrightarrow{AB}\) và \(\overrightarrow{DC}\) cùng hướng suy ra \(AB // DC\) (1)

\(\left | \overrightarrow{AB} \right |= \left | \overrightarrow{DC} \right |\) suy ra \(AB = DC\)   (2)

Từ (1) và (2), theo dấu hiệu nhận biết hình bình hành, tứ giác \(ABCD\) có một cặp cạnh song song và bằng nhau nên nó là hình bình hành. 

*) Nếu \(ABCD\) là hình bình hành thì \(\overrightarrow{AB} = \overrightarrow{DC}\)

Khi \(ABCD\) là hình bình hành thì \(AB // CD.\)

Từ hình vẽ suy ra \(\overrightarrow{AB}\) và \(\overrightarrow{DC}\) cùng hướng     (3)

Mặt khác \(AB = DC\) suy ra \(\left | \overrightarrow{AB} \right |\) = \(\left | \overrightarrow{DC} \right |\)          (4)

Từ (3) và (4) suy ra  \(\overrightarrow{AB}= \overrightarrow{DC}.\)

Như vậy tứ giác \(ABCD\) là hình bình hành khi và chỉ khi  \(\overrightarrow{AB}= \overrightarrow{DC}.\)

Loigiaihay.com


Bình chọn:
4.3 trên 62 phiếu

Các bài liên quan: - Bài 1. Các định nghĩa

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài