Bài 2 trang 94 SGK Đại số 10

Bình chọn:
4.3 trên 90 phiếu

Giải bài 2 trang 94 SGK Đại số 10. Giải các bất phương trình...

Đề bài

Giải các bất phương trình

a) \(\frac{2}{x-1}\leq \frac{5}{2x-1};\)                                       

b) \(\frac{1}{x+1}<\frac{1}{(x-1)^{2}};\)

c) \(\frac{1}{x}+\frac{2}{x+4}<\frac{3}{x+3};\)                                 

d) \(\frac{x^{2}-3x+1}{x^{2}-1}<1.\)

Phương pháp giải - Xem chi tiết

Ta dùng các phương pháp đại số để biến đổi bất phương trình về dạng: f(x) > 0 hoặc f(x) < 0 sau đó ta đi xét dấu của biểu thức f(x), để biết biểu thức f(x) nhận giá trị dương, âm với những giá trị nào của x.

Bảng xét dấu của nhị thức bậc nhất được thể hiện qua bảng sau:

Lời giải chi tiết

a) \(\frac{2}{x-1}\leq \frac{5}{2x-1}\) 

 \(\Leftrightarrow f(x) = \frac{2}{x-1}-\frac{5}{2x-1}=\frac{-x+3}{(2x-1)(x-1)}\)\(\leq 0\).

Xét dấu của \(f(x)\) ta được bảng xét dấu:

Ta có:

\(\begin{array}{l}
 - x + 3 = 0 \Leftrightarrow x = 3\\
2x - 1 = 0 \Leftrightarrow x = \frac{1}{2}\\
x - 1 = 0 \Leftrightarrow x = 1\\
\left( {\frac{1}{2} < 1 < 3} \right)
\end{array}\)

Tập nghiệm của bất phương trình là: 

                                \(T = \left ( \frac{1}{2};1 \right ) ∪ [3; +∞)\).

b) \(\frac{1}{x+1}<\frac{1}{(x-1)^{2}}\) 

\(\begin{array}{l}
f\left( x \right) = \frac{{{{\left( {x - 1} \right)}^2} - \left( {x + 1} \right)}}{{\left( {x + 1} \right){{\left( {x - 1} \right)}^2}}} = \frac{{{x^2} - 2x + 1 - x - 1}}{{\left( {x + 1} \right){{\left( {x - 1} \right)}^2}}}\\
 = \frac{{{x^2} - 3x}}{{\left( {x + 1} \right){{\left( {x - 1} \right)}^2}}} = \frac{{x\left( {x - 3} \right)}}{{\left( {x + 1} \right){{\left( {x - 1} \right)}^2}}} < 0
\end{array}\).

\(f(x)\) không xác định với \(x = ± 1\). 

Ta có: \(\begin{array}{l}
x = 0\\
x - 3 = 0 \Leftrightarrow x = 3\\
x + 1 = 0 \Leftrightarrow x =  - 1\\
{\left( {x - 1} \right)^2} = 0 \Leftrightarrow x = 1\\
\left( { - 1 < 0 < 1 < 3} \right)
\end{array}\)

Xét dấu của \(f(x)\) ta được bảng xét dấu:

Tập nghiệm của bất phương trình là:

                      \(T = (-∞; - 1) ∪ (0; 1) ∪ (1; 3)\).

c) \(\frac{1}{x}+\frac{2}{x+4}<\frac{3}{x+3} \)\(\Leftrightarrow  f(x) = \frac{1}{x}+\frac{2}{x+4}-\frac{3}{x+3}\) 

\(\begin{array}{l}
 = \frac{{\left( {x + 4} \right)\left( {x + 3} \right)}}{{x\left( {x + 4} \right)\left( {x + 3} \right)}} + \frac{{2x\left( {x + 3} \right)}}{{x\left( {x + 4} \right)\left( {x + 3} \right)}} \\ - \frac{{3x\left( {x + 4} \right)}}{{x\left( {x + 4} \right)\left( {x + 3} \right)}}\\
 = \frac{{{x^2} + 7x + 12 + 2{x^2} + 6x - 3{x^2} - 12x}}{{x\left( {x + 4} \right)\left( {x + 3} \right)}} \\= \frac{{x + 12}}{{x\left( {x + 4} \right)\left( {x + 3} \right)}}<0
\end{array}\)

Bảng xét dấu:

Ta có: \(\begin{array}{l}
x = 0\\
x + 12 = 0 \Leftrightarrow x =  - 12\\
x + 4 = 0 \Leftrightarrow x =  - 4\\
x + 3 = 0 \Leftrightarrow x =  - 3
\end{array}\)

Tập nghiệm của bất phương trình là: \(T = \left ( -12;-4 \right ) ∪ (-3; 0)\).

 d) \(\frac{x^{2}-3x+1}{x^{2}-1}<1\)

\( \Leftrightarrow f(x) = {{{x^2} - 3x + 1} \over {{x^2} - 1}} - 1 = {{{x^2} - 3x + 1 - {x^2} + 1} \over {{x^2} - 1}} \)\(= {{ - 3x + 2} \over {(x - 1)(x + 1)}} < 0\)

Bảng xét dấu:

Ta có:

\(\begin{array}{l}
 - 3x + 2 = 0 \Leftrightarrow x = \frac{2}{3}\\
x + 1 = 0 \Leftrightarrow x =  - 1\\
x - 1 = 0 \Leftrightarrow x = 1
\end{array}\)

Tập nghiệm của bất phương trình là: \(T = \left ( -1;\frac{2}{3} \right ) ∪ (1; +∞)\).

loigiaihay.com

 

Đã có lời giải Sách bài tập - Toán lớp 10 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan