Số thập phân vô hạn tuần hoàn>
Số thập phân vô hạn tuần hoàn
Ví dụ: Các số thập phân đã học như -4,3 ; 0,35;… còn được gọi là số thập phân hữu hạn.
Các số -0,2(7) ; 1,3(18) ; 5,(1) ;…. là những số thập phân vô hạn tuần hoàn với chu kì lần lượt là 7 ; 18 ; 1.
+ Mỗi số thập phân vô hạn tuần hoàn biểu diễn 1 số hữu tỉ
Chú ý:
+ Mọi số hữu tỉ đều viết được dưới dạng số thập phân hữu hạn hoặc vô hạn tuần hoàn.
+ Nếu phân số tối giản với mẫu dương mà mẫu không có ước nguyên tố nào khác 2 và 5 thì phân số đó viết được dưới dạng số thập phân hữu hạn.
Ví dụ: \(\dfrac{3}{{80}} = \dfrac{3}{{{2^4}.5}} = \dfrac{{{{3.5}^3}}}{{{2^4}{{.5.5}^3}}} = \dfrac{{375}}{{10000}} = 0,0375\)
+ Nếu phân số tối giản với mẫu dương mà mẫu có ước nguyên tố khác 2 và 5 thì phân số đó viết được dưới dạng số thập phân vô hạn tuần hoàn.
Ví dụ: \(\dfrac{7}{{30}} = 0,2333.... = 0,2(3)\)
Các bài khác cùng chuyên mục
- Hình lăng trụ đứng tứ giác, diện tích xung quanh, thể tích hình lăng trụ đứng tứ giác
- Hình lăng trụ đứng tam giác, diện tích xung quanh, thể tích của hình lăng trụ đứng tam giác
- Hình lập phương, diện tích xung quanh, diện tích toàn phần, thể tích hình lập phương
- Hình hộp chữ nhật, diện tích xung quanh, diện tích toàn phần, thể tích hình hộp chữ nhật
- Sự đồng quy của ba đường cao của tam giác
- Hình lăng trụ đứng tứ giác, diện tích xung quanh, thể tích hình lăng trụ đứng tứ giác
- Hình lăng trụ đứng tam giác, diện tích xung quanh, thể tích của hình lăng trụ đứng tam giác
- Hình lập phương, diện tích xung quanh, diện tích toàn phần, thể tích hình lập phương
- Hình hộp chữ nhật, diện tích xung quanh, diện tích toàn phần, thể tích hình hộp chữ nhật
- Sự đồng quy của ba đường cao của tam giác