Cộng, trừ các số hữu tỉ>
Cộng, trừ hai số hữu tỉ
Cộng, trừ hai số hữu tỉ
+ Bước 1: Viết các số hữu tỉ dưới dạng phân số
+ Bước 2: Cộng, trừ phân số
Chú ý: Nếu 2 số hữu tỉ đều viết được dưới dạng số thập phân thì ta áp dụng quy tắc cộng và trừ 2 đối với số thập phân.
* Tính chất của phép cộng số hữu tỉ:
+ Giao hoán: a + b = b + a
+ Kết hợp: a + (b + c) = (a + b) + c
+ Cộng với số 0 : a + 0 = a
+ 2 số đối nhau luôn có tổng là 0: a + (-a) = 0
Chú ý: * Trong tập các số hữu tỉ Q, ta cũng có quy tắc dấu ngoặc tương tự như trong tập các số nguyên Z:
Khi bỏ ngoặc,
+ Nếu trước dấu ngoặc có dấu “+” thì ta bỏ ngoặc và giữ nguyên dấu của tất cả các số hạng trong ngoặc.
+ Nếu trước dấu ngoặc có dấu “-” thì ta bỏ ngoặc và đổi dấu tất cả các số hạng trong ngoặc.
* Đối với 1 tổng, ta có thể đổi chỗ tùy ý các số hạng, đặt dấu ngoặc để nhóm các số hạng 1 cách tùy ý.
Ví dụ:
\(\begin{array}{l}\dfrac{8}{5} - (\dfrac{5}{4} + \dfrac{3}{5} - \dfrac{1}{4})\\ = \dfrac{8}{5} - \dfrac{5}{4} - \dfrac{3}{5} + \dfrac{1}{4}\\ = \left( {\dfrac{8}{5} - \dfrac{3}{5}} \right) + \left( {\dfrac{1}{4} - \dfrac{5}{4}} \right)\\ = \dfrac{5}{5} + \dfrac{{ - 4}}{4}\\ = 1 + ( - 1)\\ = 0\end{array}\)
Các bài khác cùng chuyên mục
- Hình lăng trụ đứng tứ giác, diện tích xung quanh, thể tích hình lăng trụ đứng tứ giác
- Hình lăng trụ đứng tam giác, diện tích xung quanh, thể tích của hình lăng trụ đứng tam giác
- Hình lập phương, diện tích xung quanh, diện tích toàn phần, thể tích hình lập phương
- Hình hộp chữ nhật, diện tích xung quanh, diện tích toàn phần, thể tích hình hộp chữ nhật
- Sự đồng quy của ba đường cao của tam giác
- Hình lăng trụ đứng tứ giác, diện tích xung quanh, thể tích hình lăng trụ đứng tứ giác
- Hình lăng trụ đứng tam giác, diện tích xung quanh, thể tích của hình lăng trụ đứng tam giác
- Hình lập phương, diện tích xung quanh, diện tích toàn phần, thể tích hình lập phương
- Hình hộp chữ nhật, diện tích xung quanh, diện tích toàn phần, thể tích hình hộp chữ nhật
- Sự đồng quy của ba đường cao của tam giác