Lý thuyết Ứng dụng hình học của tích phân Toán 12 Cánh Diều


1. Tính diện tích hình phẳng a) Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành và hai đường thẳng x = a, x = b Diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số y = f(x) liên tục, trục hoành và hai đường thẳng x = a, x = b (a < b) được tính bằng công thức (S = intlimits_a^b {left| {f(x)} right|dx} )

Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Hoá - Sinh - Sử - Địa

1. Tính diện tích hình phẳng

a) Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành và hai đường thẳng x = a, x = b

Quảng cáo

Lộ trình SUN 2026

Diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số y = f(x) liên tục, trục hoành và hai đường thẳng x = a, x = b (a < b) được tính bằng công thức

\(S = \int\limits_a^b {\left| {f(x)} \right|dx} \)

b) Diện tích hình phẳng giới hạn bởi đồ thị các hàm số y = f(x), y = g(x) và hai đường thẳng x = a, x = b

Diện tích S của hình phẳng giới hạn bởi đồ thị của hai hàm số y = f(x), g(x) liên tục trên \(\left[ {a;b} \right]\) và hai đường thẳng x = a, x = b được tính bằng công thức

\(S = \int\limits_a^b {\left| {f(x) - g(x)} \right|dx} \)

2. Tính thể tích của hình khối

Cho một vật thể trong không gian Oxyz. Gọi \(\beta \) là phần vật thể giới hạn bởi hai mặt phẳng vuông góc với trục Ox tại các điểm có hoành độ x = a, x = b. Một mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x cắt vật thể theo mặt cắt có diện tích là S(x). Giả sử S(x) là hàm số liên tục trên đoạn \(\left[ {a;b} \right]\). Khi đó thể tích V của vật thể \(\beta \) được tính bởi công thức

\(V = \int\limits_a^b {S(x)dx} \)

 b) Thể tích của khối tròn xoay

Cho hàm số f(x) liên tục, không âm trên đoạn \(\left[ {a;b} \right]\).

Khi quay hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành và hai đường thẳng x = a, x = b xung quanh trục hoành, ta được hình khối gọi là một khối tròn xoay.

Khi cắt khối tròn xoay đó bởi một mặt phẳng vuông góc với trục Ox tại điểm \(x \in \left[ {a;b} \right]\) được một hình tròn có bán kính f(x).

Thể tích của khối tròn xoay này là:

\(V = \pi \int\limits_a^b {{f^2}(x)dx} \)


Bình chọn:
4.9 trên 7 phiếu
  • Giải câu hỏi mở đầu trang 28 SGK Toán 12 tập 2 - Cánh diều

    Gốm Bát Tràng là tên gọi chung của các loại đồ gốm Việt Nam được sản xuất tại làng Bát Tràng, thuộc xã Bát Tràng, huyện Gia Lâm, Hà Nội. Với hơn 700 năm tuổi, gốm Bát Tràng nổi tiếng ở trong và ngoài nước về chất lượng gốm và độ tinh xảo của các sản phẩm. Những chiếc chén uống trà Hình 10 có dạng khối tròn xoay. Thể tích của các khối tròn xoay được tính như thế nào?

  • Giải mục 1 trang 28,29,30 SGK Toán 12 tập 2 - Cánh diều

    Tính diện tích hình phẳng

  • Giải mục 2 trang 34,35,36 SGK Toán 12 tập 2 - Cánh diều

    Tính thể tích của hình khối

  • Giải bài tập 1 trang 39 SGK Toán 12 tập 2 - Cánh diều

    Hình thang cong ABCD ở Hình 28 có diện tích bằng: A. (intlimits_1^2 {left( {frac{4}{x} - x + 3} right)dx} ) B. (intlimits_1^2 {left( {frac{4}{x} + x + 3} right)dx} ) C. (intlimits_1^2 {left( {frac{4}{x} - x - 3} right)dx} ) D. (intlimits_2^4 {left( {frac{4}{x} + x + 3} right)dx} )

  • Giải bài tập 2 trang 39 SGK Toán 12 tập 2 - Cánh diều

    Thể tích khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm số (f(x) = sqrt x ), trục hoành và hai đường thẳng x = 0, x = 2 quay quanh trục Ox là: A. (pi intlimits_0^2 {sqrt x dx} ) B. (pi intlimits_0^2 {xdx} ) C. (intlimits_0^2 {sqrt x dx} ) D. (intlimits_0^2 {xdx} )

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí