CHƯƠNG 1. SỐ HỮU TỈ
Bài 1. Tập hợp Q các số hữu tỉ
Bài 2. Cộng, trừ, nhân, chia số hữu tỉ
Bài 3. Phép tính lũy thừa với số mũ tự nhiên của một số hữu tỉ
Bài 4. Thứ tự thực hiện các phép tính. Quy tắc dấu ngoặc
Bài 5. Biểu diễn thập phân của một số hữu tỉ
Bài tập cuối chương 1
CHƯƠNG 2. SỐ THỰC
Bài 1. Số vô tỉ. Căn bậc hai số học
Bài 2. Tập hợp R các số thực
Bài 3. Giá trị tuyệt đối của một số thực
Bài 4. Làm tròn và ước lượng
Bài 5. Tỉ lệ thức
Bài 6. Dãy tỉ số bằng nhau
Bài 7. Đại lượng tỉ lệ thuận
Bài 8. Đại lượng tỉ lệ nghịch
Bài tập cuối chương 2
Hoạt động thực hành và trải nghiệm. Chủ đề 1: Một số hình thức khuyến mãi trong kinh doanh
CHƯƠNG 5. MỘT SỐ YẾU TỐ THỐNG KÊ VÀ XÁC SUẤT
Bài 1. Thu thập, phân loại và biểu diễn dữ liệu
Bài 2. Phân tích và xử lí dữ liệu
Bài 3. Biểu đồ đoạn thẳng
Bài 4. Biểu đồ hình quạt tròn
Bài 5. Biến cố trong một số trò chơi đơn giản
Bài 6. Xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản
Bài tập cuối chương 5
CHƯƠNG 6. BIỂU THỨC ĐẠI SỐ
Bài 1. Biểu thức số. Biểu thức đại số
Bài 2. Đa thức một biến. Nghiệm của đa thức một biến
Bài 3. Phép cộng, phép trừ đa thức một biến
Bài 4. Phép nhân đa thức một biến
Bài 5. Phép chia đa thức một biến
Bài tập cuối chương 6
CHƯƠNG 7. TAM GIÁC
Bài 1. Tổng các góc của một tam giác
Bài 2. Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác
Bài 3. Hai tam giác bằng nhau
Bài 4. Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh
Bài 5. Trường hợp bằng nhau thứ hai của tam giác: cạnh - góc - cạnh
Bài 6. Trường hợp bằng nhau thứ ba của tam giác: góc- cạnh - góc
Bài 7. Tam giác cân
Bài 8. Đường vuông góc và đường xiên
Bài 9. Đường trung trực của một đoạn thẳng
Bài 10. Tính chất ba đường trung tuyến của tam giác
Bài 11. Tính chất ba đường phân giác của tam giác
Bài 12. Tính chất ba đường trung trực của tam giác
Bài 13. Tính chất ba đường cao của tam giác
Bài tập cuối chương 7

Trắc nghiệm Xác định giả thiết và kết luận của định lí Toán 7 có đáp án

Trắc nghiệm Xác định giả thiết và kết luận của định lí

8 câu hỏi
Trắc nghiệm
Câu 1 :

Trong các câu sau, câu nào không cho một định lí:

  • A.

    Đường thẳng nào vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng kia

  • B.

    Nếu một đường thẳng cắt 2 đường thẳng song song thì tạo ra các cặp góc so le trong, cặp góc đồng vị bằng nhau.

  • C.

    Hai góc đối đỉnh thì bằng nhau.

  • D.

    Hai góc kề nhau thì có tổng số đo là 180 độ

Câu 2 :

Cho định lý: “Nếu hai đường thẳng song cắt đường thẳng thứ ba thì hai góc đồng vị bằng nhau” (xem hình vẽ dưới đây). Giả thiết của định lý là

  • A.

    \(a//b;\,a \bot c\)

  • B.

    \(a//b,\) \(c \cap a = \left\{ A \right\};c \cap b = \left\{ B \right\}\)

  • C.

    \(a//b;\,a//c\)

  • D.

    \(a//b,\) \(c\) bất kì.

Câu 3 :

Cho định lý: “Hai tia phân giác của hai góc kề bù tạo thành một góc vuông” (hình vẽ). Giả thiết, kết luận của định lý là:

  • A.

    Giả thiết: Cho góc bẹt \(AOB\) và tia \(OD.\) \(OE\) là phân giác góc \(BOD\); \(OF\) là phân giác góc \(AOD\).

    Kết luận: \(OE \bot OF\)

  • B.

    Giả thiết: Cho góc bẹt \(AOB\) và tia \(OD.\) \(OE\) là phân giác góc \(BOF\); \(OF\) là phân giác góc \(AOD\).

    Kết luận: \(OE \bot OA\)

  • C.

    Giả thiết: Cho góc bẹt \(AOB\) và tia \(OD.\) \(OE\) là phân giác góc \(BOD\); \(OF\) là phân giác góc \(AOE\).

    Kết luận: \(OE \bot OF\)

  • D.

    Giả thiết: Cho góc bẹt \(AOB\) và tia \(OD.\) \(OE\) là phân giác góc \(BOD\); \(OF\) là phân giác góc \(AOD\).

    Kết luận: \(OB \bot OF\)

Câu 4 :

Phần giả thiết:  \(c \cap a = \left\{ A \right\};c \cap b = \left\{ B \right\}\), \(\widehat {{A_1}} = \widehat {{B_1}}\) (tham khảo hình vẽ) là của định lý nào dưới đây?

  • A.

    Nếu hai đường thẳng cắt một đường thẳng thứ ba tạo thành hai góc so le trong bù nhau thì hai đường thẳng đó song song

  • B.

    Nếu hai đường thẳng cắt một đường thẳng thứ ba tạo thành hai góc so le trong bằng nhau thì hai đường thẳng đó song song.

  • C.

    Nếu hai đường thẳng cắt một đường thẳng thứ ba tạo thành hai góc đồng vị bằng nhau thì hai đường thẳng đó song song.

  • D.

    Nếu hai đường thẳng cắt một đường thẳng thứ ba tạo thành hai góc trong cùng phía bù nhau thì hai đường thẳng đó song song.

Câu 5 :

Phát biểu định lý sau bằng lời:

GT

\(a \bot c;b \bot c\)

KL

\(a//c\)

 

  • A.

    Nếu một đường thẳng cắt hai đường thẳng phân biệt thì chúng song song với nhau.

  • B.

    Nếu hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì chúng vuông góc với nhau.

  • C.

    Nếu hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì chúng song song với nhau.

  • D.

    Nếu hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì chúng cắt nhau.

Câu 6 :

Định lý sau được phát biểu thành lời là:

GT

\(a//b;c \bot a\)

KL

\(c \bot b\)

  • A.

    Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó vuông góc với đường thẳng kia.

  • B.

    Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó song song với đường thẳng kia.

  • C.

    Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó tạo với đường thẳng kia một góc \(60^\circ .\)

  • D.

    Cả A, B, C đều sai.

Câu 7 :

Chọn câu đúng.

  • A.

    Giả thiết của định lý là điều cho biết.

  • B.

    Kết luận của định lý là điều được suy ra.

  • C.

    Giả thiết của định lý là điều được suy ra.

  • D.

    Cả A, B đều đúng.

Câu 8 :

Chọn câu sai:

  • A.

    Định lí thường được phát biểu ở dạng: “ Vì … nên….”

  • B.

    Giả thiết được viết tắt là GT, kết luận được viết tắt là KL

  • C.

    Để chỉ ra một khẳng định không đúng, ta có thể chỉ ra 1 phản ví dụ

  • D.

    Để chỉ ra một khẳng định là đúng, ta đi chứng minh.