

Giải mục 2 trang 27, 28 SGK Toán 12 tập 1 - Kết nối tri thức
Khảo sát và vẽ đồ thị hàm số đa thức bậc 3
Đề bài
Trả lời câu hỏi Luyện tập 1 trang 28 SGK Toán 12 Kết nối tri thức
Khảo sát sự biến thiên và vẽ đồ thị của hàm số y=−2x3+3x2−5xy=−2x3+3x2−5x.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về sơ đồ khảo sát hàm số bậc ba để khảo sát và vẽ đồ thị hàm số:
Sơ đồ khảo sát hàm số bậc ba
1. Tìm tập xác định của hàm số.
2. Khảo sát sự biến thiên của hàm số:
+ Tính đạo hàm y’. Tìm các điểm tại đó y’ bằng 0 hoặc đạo hàm không tồn tại.
+ Xét dấu y’ để chỉ ra các khoảng đơn điệu của hàm số.
+ Tìm cực trị của hàm số.
+ Tìm các giới hạn tại vô cực, giới hạn vô cực.
+ Lập bảng biến thiên của hàm số.
3. Vẽ đồ thị của hàm số dựa vào bảng biến thiên.
Lời giải chi tiết
1. Tập xác định: D=R
2. Sự biến thiên:
Ta có: y′=−6x2+6x−5=−6(x−12)2−72≤−72 với mọi x∈R
Hàm số nghịch biến trên (−∞;+∞).
Hàm số không có cực trị.
Giới hạn tại vô cực: limx→−∞y=limx→−∞(−2x3+3x2−5x)=limx→−∞[x3(−2+3x−3x2)]=+∞
limx→+∞y=limx→+∞(−2x3+3x2−5x)=limx→+∞[x3(−2+3x−3x2)]=−∞
Bảng biến thiên:
3. Đồ thị:
Giao điểm của đồ thị hàm số y=−2x3+3x2−5x với trục tung là (0;0).
Ta có: −2x3+3x2−5x=0⇔−x(2x2−3x+5)=0⇔x=0. Do đó, giao điểm của đồ thị hàm số với trục hoành là điểm (0; 0).
Điểm (1;−4) thuộc đồ thị hàm số y=−2x3+3x2−5x.
Đồ thị hàm số có tâm đối xứng là điểm (12;−2).


- Giải mục 3 trang 28, 29, 30 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 1.21 trang 32 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 1.22 trang 32 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 1.23 trang 32 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 1.24 trang 32 SGK Toán 12 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD - Click xem ngay) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức