Giải mục 2 trang 27, 28 SGK Toán 12 tập 1 - Kết nối tri thức


Khảo sát và vẽ đồ thị hàm số đa thức bậc 3

Đề bài

Trả lời câu hỏi Luyện tập 1 trang 28 SGK Toán 12 Kết nối tri thức

Khảo sát sự biến thiên và vẽ đồ thị của hàm số y=2x3+3x25xy=2x3+3x25x

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về sơ đồ khảo sát hàm số bậc ba để khảo sát và vẽ đồ thị hàm số:

Sơ đồ khảo sát hàm số bậc ba

1. Tìm tập xác định của hàm số.

2. Khảo sát sự biến thiên của hàm số:

+ Tính đạo hàm y’. Tìm các điểm tại đó y’ bằng 0 hoặc đạo hàm không tồn tại.

+ Xét dấu y’ để chỉ ra các khoảng đơn điệu của hàm số.

+ Tìm cực trị của hàm số.

+ Tìm các giới hạn tại vô cực, giới hạn vô cực.

+ Lập bảng biến thiên của hàm số.

3. Vẽ đồ thị của hàm số dựa vào bảng biến thiên.

Lời giải chi tiết

1. Tập xác định: D=R

2. Sự biến thiên:

Ta có: y=6x2+6x5=6(x12)27272 với mọi xR

Hàm số nghịch biến trên (;+).

Hàm số không có cực trị.

Giới hạn tại vô cực: limxy=limx(2x3+3x25x)=limx[x3(2+3x3x2)]=+

limx+y=limx+(2x3+3x25x)=limx+[x3(2+3x3x2)]=

Bảng biến thiên:

3. Đồ thị: 

Giao điểm của đồ thị hàm số y=2x3+3x25x với trục tung là (0;0).

Ta có: 2x3+3x25x=0x(2x23x+5)=0x=0. Do đó, giao điểm của đồ thị hàm số với trục hoành là điểm (0; 0).

Điểm (1;4) thuộc đồ thị hàm số y=2x3+3x25x.

Đồ thị hàm số có tâm đối xứng là điểm (12;2).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD - Click xem ngay) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.