Giải mục 2 trang 27, 28 SGK Toán 12 tập 1 - Kết nối tri thức


Khảo sát và vẽ đồ thị hàm số đa thức bậc 3

Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Hoá - Sinh - Sử - Địa

Đề bài

Trả lời câu hỏi Luyện tập 1 trang 28 SGK Toán 12 Kết nối tri thức

Khảo sát sự biến thiên và vẽ đồ thị của hàm số \(y =  - 2{x^3} + 3{x^2} - 5x\). 

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về sơ đồ khảo sát hàm số bậc ba để khảo sát và vẽ đồ thị hàm số:

Sơ đồ khảo sát hàm số bậc ba

1. Tìm tập xác định của hàm số.

2. Khảo sát sự biến thiên của hàm số:

+ Tính đạo hàm y’. Tìm các điểm tại đó y’ bằng 0 hoặc đạo hàm không tồn tại.

+ Xét dấu y’ để chỉ ra các khoảng đơn điệu của hàm số.

+ Tìm cực trị của hàm số.

+ Tìm các giới hạn tại vô cực, giới hạn vô cực.

+ Lập bảng biến thiên của hàm số.

3. Vẽ đồ thị của hàm số dựa vào bảng biến thiên.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

1. Tập xác định: \(D = \mathbb{R}\)

2. Sự biến thiên:

Ta có: \(y' =  - 6{x^2} + 6x - 5 =  - 6{\left( {x - \frac{1}{2}} \right)^2} - \frac{7}{2} \le  - \frac{7}{2}\) với mọi \(x \in \mathbb{R}\)

Hàm số nghịch biến trên \(\left( { - \infty ; + \infty } \right)\).

Hàm số không có cực trị.

Giới hạn tại vô cực: \(\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \left( { - 2{x^3} + 3{x^2} - 5x} \right) = \mathop {\lim }\limits_{x \to  - \infty } \left[ {{x^3}\left( { - 2 + \frac{3}{x} - \frac{3}{{{x^2}}}} \right)} \right] =  + \infty \)

\(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \left( { - 2{x^3} + 3{x^2} - 5x} \right) = \mathop {\lim }\limits_{x \to  + \infty } \left[ {{x^3}\left( { - 2 + \frac{3}{x} - \frac{3}{{{x^2}}}} \right)} \right] =  - \infty \)

Bảng biến thiên:

3. Đồ thị: 

Giao điểm của đồ thị hàm số \(y =  - 2{x^3} + 3{x^2} - 5x\) với trục tung là \(\left( {0;0} \right)\).

Ta có: \( - 2{x^3} + 3{x^2} - 5x = 0 \Leftrightarrow  - x\left( {2{x^2} - 3x + 5} \right) = 0 \Leftrightarrow x = 0\). Do đó, giao điểm của đồ thị hàm số với trục hoành là điểm (0; 0).

Điểm \(\left( {1; - 4} \right)\) thuộc đồ thị hàm số \(y =  - 2{x^3} + 3{x^2} - 5x\).

Đồ thị hàm số có tâm đối xứng là điểm \(\left( {\frac{1}{2}; - 2} \right)\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí