Giải mục 1 trang 62, 63 SGK Toán 8 tập 2– Chân trời sáng tạo >
Nêu nhận xét về hình dạng và kích thước của từng cặp hình:
Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Khoa học tự nhiên
HĐ1
Video hướng dẫn giải
Nêu nhận xét về hình dạng và kích thước của từng cặp hình: Hình 1a và Hình 1b, Hình 1c và Hình 1d, Hình 1e và Hình 1g.
Phương pháp giải:
Quan sát và so sánh
Lời giải chi tiết:
Hình 1a và Hình 1b có kích thước không bằng nhau. Tuy nhiên ta có thể phóng to Hình 1a để thu được Hình 1b hoặc thu nhỏ Hình 1b để được Hình 1a.
Hình 1c và Hình 1d có kích thước không bằng nhau. Tuy nhiên ta có thể phóng to Hình 1d để thu được Hình 1c hoặc thu nhỏ Hình 1c để được Hình 1d.
Hình 1e và Hình 1g có kích thước không bằng nhau. Tuy nhiên ta có thể phóng to Hình 1e để thu được Hình 1g hoặc thu nhỏ Hình 1g để được Hình 1e.
HĐ2
Video hướng dẫn giải
Cho tam giác \(ABC\) và tam giác \(A'B'C'\) như Hình 2.
a) Hãy viết các cặp góc bằng nhau.
b) Tính và so sánh các tỉ số
\(\frac{{A'B'}}{{AB}};\frac{{A'C'}}{{AC}};\frac{{B'C'}}{{BC}}\).
Phương pháp giải:
Quan sát, so sánh, tính tỉ số.
Lời giải chi tiết:
a) Từ kí hiệu của hình vẽ ta thấy các cặp góc bằng nhau là:
\(\widehat A = \widehat {A'};\widehat B = \widehat {B'};\widehat C = \widehat {C'}\)
b) Ta có:
\(\frac{{A'B'}}{{AB}} = \frac{6}{4} = \frac{3}{2};\frac{{A'C'}}{{AC}} = \frac{{7,5}}{5} = \frac{3}{2};\frac{{B'C'}}{{BC}} = \frac{9}{6} = \frac{3}{2}\).
Ta thấy, \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = \frac{3}{2}\)
TH1
Video hướng dẫn giải
Quan sát Hình 3, cho biết \(\Delta AMN\backsim\Delta ABC\).
a) Hãy viết tỉ số của các cạnh tương ứng và tính tỉ số đồng dạng.
b) Tính góc \(\widehat {AMN}\).
Phương pháp giải:
Hai tam giác đồng dạng với nhau thì các góc tương ứng bằng nhau và các cặp cạnh tương ứng có cùng tỉ lệ.
Lời giải chi tiết:
a) Vì tam giác \(\Delta AMN\backsim\Delta ABC\) nên ta có \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\) (các cạnh tương ứng)
Tỉ số đồng dạng là: \(\frac{{MN}}{{BC}} = \frac{4}{{12}} = \frac{1}{3}\).
b) Vì \(\Delta AMN\backsim\Delta ABC\) nên \(\widehat {AMN} = \widehat {ABC} = 65^\circ \)
Vậy \(\widehat {AMN} = 65^\circ \).
- Giải mục 2 trang 63, 64, 65 SGK Toán 8 tập 2– Chân trời sáng tạo
- Giải bài 1 trang 65 SGK Toán 8 tập 2– Chân trời sáng tạo
- Giải bài 2 trang 65 SGK Toán 8 tập 2– Chân trời sáng tạo
- Giải bài 3 trang 65 SGK Toán 8 tập 2– Chân trời sáng tạo
- Giải bài 4 trang 66 SGK Toán 8 tập 2– Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Xác suất lí thuyết và xác suất thực nghiệm SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Mô tả xác suất bằng tỉ số SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Hai hình đồng dạng SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Xác suất lí thuyết và xác suất thực nghiệm SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Mô tả xác suất bằng tỉ số SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Hai hình đồng dạng SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác SGK Toán 8 - Chân trời sáng tạo