Giải mục 1 trang 42 SGK Toán 8 tập 1 - Kết nối tri thức >
Hãy viết đa thức ({x^2} - 2xy) thành tích của các đa thức, khác đa thức là số.
HĐ1
Video hướng dẫn giải
Hãy viết đa thức \({x^2} - 2xy\) thành tích của các đa thức, khác đa thức là số.
Phương pháp giải:
Áp dụng tính chất phân phối của phép nhân đối với phép cộng để đặt nhân tử chung.
Lời giải chi tiết:
\({x^2} - 2xy = x.x - 2xy = x\left( {x - 2y} \right)\)
LT1
Video hướng dẫn giải
Phân tích các đa thức sau thành nhân tử:
a) \(6{y^3} + 2y\)
b) \(4\left( {x - y} \right) - 3x\left( {x - y} \right)\)
Phương pháp giải:
Áp dụng tính chất phân phối của phép nhân đối với phép cộng để đặt nhân tử chung.
Lời giải chi tiết:
a) \(6{y^3} + 2y = 2y.\left( {3{y^2} + 1} \right)\)
b) \(4\left( {x - y} \right) - 3x\left( {x - y} \right) = \left( {x - y} \right)\left( {4 - 3x} \right)\)
VD1
Giải bài toán mở đầu bằng cách phân tích \(2{x^2} + x\) thành nhân tử.
Phương pháp giải:
Áp dụng tính chất phân phối của phép nhân đối với phép cộng để đặt nhân tử chung.
\(A.B = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{A = 0}\\{B = 0}\end{array}} \right.\)
Lời giải chi tiết:
\(2{x^2} + x = 0 \Leftrightarrow x\left( {2x + 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{2x + 1 = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = \dfrac{{ - 1}}{2}}\end{array}} \right.\)
Vậy \(x = 0;x = \dfrac{{ - 1}}{2}\)
- Giải mục 2 trang 43 SGK Toán 8 tập 1 - Kết nối tri thức
- Giải mục 3 trang 43 SGK Toán 8 tập 1 - Kết nối tri thức
- Giải bài 2.22 trang 44 SGK Toán 8 tập 1 - Kết nối tri thức
- Giải bài 2.23 trang 44 SGK Toán 8 tập 1 - Kết nối tri thức
- Giải bài 2.24 trang 44 SGK Toán 8 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải dự án 2 trang 112 SGK Toán 8 tập 1
- Lý thuyết Hình chóp tứ giác đều SGK Toán 8 - Kết nối tri thức
- Lý thuyết Hình chóp tam giác đều SGK Toán 8 - Kết nối tri thức
- Lý thuyết Hình đồng dạng SGK Toán 8 - Kết nối tri thức
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Kết nối tri thức