Giải câu hỏi trang 84, 85 SGK Toán 8 tập 1 - Kết nối tri thức >
Cho tia phân giác At của góc xAy (H.4.20). Nếu lấy điểm B trên tia Ax, điểm C trên tia Ay, ta được tam giác ABC. Giả sử tia phân giác At cắt BC tại điểm D. Khi lấy B và C sao cho AB = AC (H.4.20a), hãy so sánh tỉ số (dfrac{{DB}}{{DC}}) và (dfrac{{AB}}{{AC}})
HĐ1
Video hướng dẫn giải
Cho tia phân giác At của góc xAy (H.4.20). Nếu lấy điểm B trên tia Ax, điểm C trên tia Ay, ta được tam giác ABC. Giả sử tia phân giác At cắt BC tại điểm D.
Khi lấy B và C sao cho AB = AC (H.4.20a), hãy so sánh tỉ số \(\dfrac{{DB}}{{DC}}\) và \(\dfrac{{AB}}{{AC}}\)
Phương pháp giải:
Vận dụng tính chất đường phân giác của tam giác.
Lời giải chi tiết:
Theo đề bài, At là tia phân giác của góc xAy hay AD là tia phân giác của góc BAC.
Tam giác ABC cân tại A (vì AB = AC) có AD là tia phân giác của góc BAC nên AD cũng là đường trung tuyến của tam giác ABC.
Suy ra D là trung điểm của cạnh BC hay DB = DC nên \(\dfrac{{DB}}{{DC}} = 1\).
Vì AB = AC nên \(\dfrac{{AB}}{{AC}} = 1\)
Vậy khi lấy B và C sao cho AB = AC thì \(\dfrac{{DB}}{{DC}} = \dfrac{{AB}}{{AC}}\)
HĐ2
Video hướng dẫn giải
Cho tia phân giác At của góc xAy (H.4.20). Nếu lấy điểm B trên tia Ax, điểm C trên tia Ay, ta được tam giác ABC. Giả sử tia phân giác At cắt BC tại điểm D
Khi lấy B và C sao cho AB = 2 cm và AC = 4 cm (H.4.20b), hãy dùng thước có vạch chia đến milimét để đo độ dài các đoạn thẳng DB, DC rồi so sánh hai tỉ số \(\dfrac{{DB}}{{DC}}\) và \(\dfrac{{AB}}{{AC}}\)
Phương pháp giải:
Dùng thước đo các khoảng cách và tính tỉ số
Lời giải chi tiết:
Dùng thước có vạch chia đến milimét để đo độ dài các đoạn thẳng DB, DC, ta được:
DB = 12 mm = 1,2 cm và DC = 24 mm = 2,4 cm.
Khi đó, \(\dfrac{{DB}}{{DC}} = \dfrac{{1,2}}{{2,4}} = \dfrac{1}{2};\dfrac{{AB}}{{AC}} = \dfrac{2}{4} = \dfrac{1}{2}\)
Vậy khi lấy B và C sao cho AB = 2 cm và AC = 4 cm thì \(\dfrac{{DB}}{{DC}} = \dfrac{{AB}}{{AC}}\)
Luyện tập
Video hướng dẫn giải
Tính độ dài x trên Hình 4.23
Phương pháp giải:
Vận dụng tính chất đường phân giác trong tam giác
Lời giải chi tiết:
Trong Hình 4.23 có \(\widehat {DME} = \widehat {MEF}\) nên EM là tia phân giác của \(\widehat {{\rm{DEF}}}\).
Áp dụng tính chất đường phân giác của tam giác, ta có:
\(\dfrac{{E{\rm{D}}}}{{EF}} = \dfrac{{M{\rm{D}}}}{{MF}}\) hay \(\dfrac{{4,5}}{x} = \dfrac{{3,5}}{{5,6}}\)
Suy ra: \(x = \dfrac{{5,6.4,5}}{{3,5}} = 7,2\)(đvđd)
Vậy x = 7,2 (đvđd).
- Giải bài 4.10 trang 86 SGK Toán 8 tập 1 - Kết nối tri thức
- Giải bài 4.11 trang 86 SGK Toán 8 tập 1 - Kết nối tri thức
- Giải bài 4.12 trang 86 SGK Toán 8 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 84, 85 SGK Toán 8 tập 1 - Kết nối tri thức
- Lý thuyết Tính chất đường phân giác của tam giác SGK Toán 8 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải dự án 2 trang 112 SGK Toán 8 tập 1
- Lý thuyết Hình chóp tứ giác đều SGK Toán 8 - Kết nối tri thức
- Lý thuyết Hình chóp tam giác đều SGK Toán 8 - Kết nối tri thức
- Lý thuyết Hình đồng dạng SGK Toán 8 - Kết nối tri thức
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Kết nối tri thức