Giải câu hỏi mở đầu trang 75 SGK Toán 12 tập 1 - Kết nối tri thức


Thống kê số ngày trong tháng Sáu năm 2021 và năm 2022 theo nhiệt độ cao nhất trong ngày tại Hà Nội, người ta thu được bảng sau:

Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Hoá - Sinh - Sử - Địa

Đề bài

Thống kê số ngày trong tháng Sáu năm 2021 và năm 2022 theo nhiệt độ cao nhất trong ngày tại Hà Nội, người ta thu được bảng sau:

Hỏi tháng Sáu năm nào ở Hà Nội nhiệt độ cao nhất trong ngày biến đổi nhiều hơn?

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về khoảng biến thiên của mẫu số liệu ghép nhóm để tính.

Cho mẫu số liệu ghép nhóm:

Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: \(R = {a_{k + 1}} - {a_1}\).

+ Sử dụng kiến thức về tính chất về nhóm chứa tứ phân vị của mẫu số liệu để tính: Ta có thể xác định nhóm chứa tứ phân vị thứ r nhờ tính chất: có khoảng \(\left( {\frac{{r.n}}{4}} \right)\) giá trị nhỏ hơn tứ phân vị này.

+ Sử dụng kiến thức về khoảng tứ phân vị của mẫu số liệu ghép nhóm để tính: Khoảng tứ phân vị của mẫu số liệu ghép nhóm, kí hiệu là \({\Delta _Q}\), là hiệu số giữa tứ phân vị thứ ba \({Q_3}\) và tứ phân vị thứ nhất \({Q_1}\) của mẫu số liệu đó, tức là \({\Delta _Q} = {Q_3} - {Q_1}\).

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

* Năm 2021:

Khoảng biến thiên của nhiệt độ là: \({R_1} = 40 - 30 = 10\).

Cỡ mẫu \(n = 30\). Giả sử \({y_1},{y_2},...,{y_{30}}\) là nhiệt độ cao nhất trong ngày của 30 ngày tháng Sáu năm 2021 và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự không giảm.

Vì \(\frac{n}{4} = \frac{{30}}{4} = 7,5\) và \(2 < 7,5 < 2 + 8\) nên tứ phân vị thứ nhất thuộc nhóm \(\left[ {32;34} \right)\) và tứ phân vị thứ nhất là: \({Q_1} = 32 + \frac{{\frac{{30}}{4} - 2}}{8}.2 = 33,375\).

Vì \(\frac{{3n}}{4} = \frac{{3.30}}{4} = 22,5\) và \(2 + 8 + 5 + 6 < 22,5,5 < 2 + 8 + 5 + 6 + 9\) nên tứ phân vị thứ ba thuộc nhóm \(\left[ {38;40} \right)\) và tứ phân vị thứ ba là: \({Q_3} = 38 + \frac{{\frac{{3.30}}{4} - \left( {2 + 8 + 5 + 6} \right)}}{9}.2 = \frac{{115}}{3}\).

Khoảng biến thiên của mẫu số liệu ghép nhóm là: \({\Delta _{{Q_1}}} = \frac{{115}}{3} - 33,375 = \frac{{119}}{{24}}\).

* Năm 2022:

Khoảng biến thiên của nhiệt độ là: \({R_2} = 40 - 28 = 12\).

Cỡ mẫu \(n = 30\). Giả sử \({z_1},{z_2},...,{z_{30}}\) là nhiệt độ cao nhất trong ngày của 30 ngày tháng Sáu năm 2022 và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.

Vì \(\frac{n}{4} = \frac{{30}}{4} = 7,5\) và \(2 + 3 < 7,5 < 2 + 3 + 4\) nên nhóm chứa tứ phân vị thứ nhất là nhóm \(\left[ {32;34} \right)\) và tứ phân vị thứ nhất là: \(Q{'_1} = 32 + \frac{{\frac{{30}}{4} - \left( {2 + 3} \right)}}{4}.\left( {34 - 32} \right) = 33,25\).

Vì \(\frac{{3n}}{4} = \frac{{3.30}}{4} = 22,5\) và \(2 + 3 + 4 + 11 < 22,5 < 2 + 3 + 4 + 11 + 8\) nên nhóm chứa tứ phân vị thứ ba là nhóm \(\left[ {36;38} \right)\) và tứ phân vị thứ ba là: \(Q{'_3} = 36 + \frac{{\frac{{3.30}}{4} - \left( {2 + 3 + 4 + 11} \right)}}{8}.\left( {38 - 36} \right) = 36,625\).

Khoảng biến thiên của mẫu số liệu ghép nhóm là: \({\Delta _{{Q_2}}} = 36,625 - 33,25 = 3,375\).

* So sánh:

Theo khoảng biến thiên: Vì \({R_2} > {R_1}\) nên nhiệt độ cao nhất trong ngày vào tháng 6 năm 2022 biến đổi nhiều hơn nhiệt độ cao nhất trong ngày vào tháng 6 năm 2021.

Theo khoảng tứ phân vị: Vì \({\Delta _{{Q_1}}} > {\Delta _{{Q_2}}}\) nên nhiệt độ cao nhất trong ngày vào tháng 6 năm 2021 biến đổi nhiều hơn nhiệt độ cao nhất trong ngày vào tháng 6 năm 2022.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí