Giải bài tập 6 trang 19 SGK Toán 12 tập 1 - Cánh diều


Người ta bơm xăng vào bình xăng của một xe ô tô. Biết thể tích V (lít) của lượng xăng trong bình xăng tính theo thời gian bơm xăng t (phút) được cho bởi công thức: (Vleft( t right) = 300left( {{t^2} - {t^3}} right) + 4) với (0 le t le 0,5) a) Ban đầu trong bình xăng có bao nhiêu lít xăng ? b) Sau khi bơm 30s thì bình xăng đầy. Hỏi dung tích của bình xăng trong xe là bao nhiêu lít ? c) Khi xăng chảy vào bình xăng, gọi (V'left( t right))là tốc độ tăng thể tích tại thời điểm t với

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

 

 

Người ta bơm xăng vào bình xăng của một xe ô tô. Biết thể tích V (lít) của lượng xăng trong bình xăng tính theo thời gian bơm xăng t (phút) được cho bởi công thức:

\(V\left( t \right) = 300\left( {{t^2} - {t^3}} \right) + 4\) với \(0 \le t \le 0,5\).

a) Ban đầu trong bình xăng có bao nhiêu lít xăng?

b) Sau khi bơm 30s thì bình xăng đầy. Hỏi dung tích của bình xăng trong xe là bao nhiêu lít?

c) Khi xăng chảy vào bình xăng, gọi \(V'\left( t \right)\)là tốc độ tăng thể tích tại thời điểm t với \(0 \le t \le 0,5\). Xăng chảy vào bình xăng ở thời điểm nào có tốc độ tăng thể tích là lớn nhất?

Phương pháp giải - Xem chi tiết

a) Thay \(t = 0\) vào hàm số

b) Thay \(t = 0,5\) (phút) vào hàm số.

c) Tính đạo hàm \(V'\left( t \right)\) rồi tìm giá trị lớn nhất của đạo hàm \(V'\left( t \right)\).

Lời giải chi tiết

a) Ban đầu bình xăng có \(V\left( 0 \right) = 4\) lít xăng.

b) Sau khi bơm 30s, ta có \(V\left( {0,5} \right) = 41,5l\).

c) Ta có: \(V'\left( t \right) = 300\left( {2t - 3{t^2}} \right)\).

Nhận xét: \(V'\left( t \right)\) có đồ thị là một parabol nên tốc độ tăng thể tích đạt giá trị lớn nhất bằng 100 tại \(t = \frac{1}{3}s\).


Bình chọn:
4 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí