Giải bài tập 5.19 trang 64 SGK Toán 12 tập 2 - Cùng khám phá>
Chứng minh ba đường thẳng sau đây đôi một vuông góc: \({d_1}:\left\{ {\begin{array}{*{20}{l}}{x = 2 - t}\\{y = 3 + 2t{\mkern 1mu} (t \in \mathbb{R})}\\{z = - 1 + 4t}\end{array}} \right.\quad {d_2}:\left\{ {\begin{array}{*{20}{l}}{x = 2m}\\{y = 1 - m{\mkern 1mu} (m \in \mathbb{R})}\\{z = 2 + m}\end{array}} \right.\quad {d_3}:\frac{{x + 3}}{2} = \frac{{y - 2}}{3} = \frac{z}{{ - 1}}\)
Đề bài
Chứng minh ba đường thẳng sau đây đôi một vuông góc:
\({d_1}:\left\{ {\begin{array}{*{20}{l}}{x = 2 - t}\\{y = 3 + 2t{\mkern 1mu} (t \in \mathbb{R})}\\{z = - 1 + 4t}\end{array}} \right.\quad {d_2}:\left\{ {\begin{array}{*{20}{l}}{x = 2m}\\{y = 1 - m{\mkern 1mu} (m \in \mathbb{R})}\\{z = 2 + m}\end{array}} \right.\quad {d_3}:\frac{{x + 3}}{2} = \frac{{y - 2}}{3} = \frac{z}{{ - 1}}\)
Phương pháp giải - Xem chi tiết
Tìm vectơ chỉ phương của các đường thẳng \({d_1}\), \({d_2}\), và \({d_3}\). Kiểm tra điều kiện vuông góc của các vectơ chỉ phương bằng tích vô hướng: nếu tích vô hướng của hai vectơ chỉ phương bằng 0 thì hai đường thẳng vuông góc.
Lời giải chi tiết
Vectơ chỉ phương của \({d_1}\): \(\overrightarrow {{u_1}} = ( - 1,2,4)\)
Vectơ chỉ phương của \({d_2}\): \(\overrightarrow {{u_2}} = (2, - 1,1)\)
Vectơ chỉ phương của \({d_3}\): \(\overrightarrow {{u_3}} = (2,3, - 1)\)
Kiểm tra vuông góc:
- \({d_1}\) và \({d_2}\) vuông góc: \(\overrightarrow {{u_1}} \cdot \overrightarrow {{u_2}} = ( - 1) \cdot 2 + 2 \cdot ( - 1) + 4 \cdot 1 = - 2 - 2 + 4 = 0\)
Vậy \({d_1}\) vuông góc với \({d_2}\).
- \({d_1}\) và \({d_3}\) vuông góc: \(\overrightarrow {{u_1}} \cdot \overrightarrow {{u_3}} = ( - 1) \cdot 2 + 2 \cdot 3 + 4 \cdot ( - 1) = - 2 + 6 - 4 = 0\)
Vậy \({d_1}\) vuông góc với \({d_3}\).
- \({d_2}\) và \({d_3}\) vuông góc: \(\overrightarrow {{u_2}} \cdot \overrightarrow {{u_3}} = 2 \cdot 2 + ( - 1) \cdot 3 + 1 \cdot ( - 1) = 4 - 3 - 1 = 0\)
Vậy \({d_2}\) vuông góc với \({d_3}\).
Kết luận: Ba đường thẳng \({d_1}\), \({d_2}\), \({d_3}\) đôi một vuông góc.
- Giải bài tập 5.20 trang 64 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 5.21 trang 64 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 5.22 trang 65 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 5.23 trang 65 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 5.18 trang 64 SGK Toán 12 tập 2 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục
- Giải bài tập 6.20 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.19 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.18 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.17 trang 107 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.16 trang 107 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.20 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.19 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.18 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.17 trang 107 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.16 trang 107 SGK Toán 12 tập 2 - Cùng khám phá