Giải bài tập 5 trang 54 SGK Toán 9 tập 1 - Cánh diều


Chứng minh: a. (left( {2 - sqrt[{}]{3}} right)left( {2 + sqrt[{}]{3}} right) = 1) b. (left( {sqrt[3]{2} + 1} right)left[ {{{left( {sqrt[3]{2}} right)}^2} - sqrt[3]{2} + 1} right] = 3)

Tổng hợp đề thi giữa kì 1 lớp 9 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Chứng minh:

a. \(\left( {2 - \sqrt[{}]{3}} \right)\left( {2 + \sqrt[{}]{3}} \right) = 1\)

b. \(\left( {\sqrt[3]{2} + 1} \right)\left[ {{{\left( {\sqrt[3]{2}} \right)}^2} - \sqrt[3]{2} + 1} \right] = 3\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Dựa vào hằng đẳng thức để chứng minh.

Lời giải chi tiết

a. Ta có:

\(\left( {2 - \sqrt[{}]{3}} \right)\left( {2 + \sqrt[{}]{3}} \right) = {2^2} - {\left( {\sqrt[{}]{3}} \right)^2} = 4 - 3 = 1\).

b. Ta có:

\(\left( {\sqrt[3]{2} + 1} \right)\left[ {{{\left( {\sqrt[3]{2}} \right)}^2} - \sqrt[3]{2} + 1} \right] = {\left( {\sqrt[3]{2}} \right)^3} + {1^3} = 2 + 1 = 3\).


Bình chọn:
3.7 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Cánh diều - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí