Giải bài tập 2.4 trang 64 SGK Toán 12 tập 1 - Cùng khám phá>
Cho hình hộp ABCD.EFGH. Đặt \(\overrightarrow {AB} = \vec a,\overrightarrow {AD} = \vec b,\overrightarrow {AE} = \vec c\). Gọi M là trung điểm của đoạn BG. Hãy biểu diễn \(\overrightarrow {AM} \) theo \(\vec a,\vec b,\vec c\).
Đề bài
Cho hình hộp ABCD.EFGH. Đặt \(\overrightarrow {AB} = \vec a,\overrightarrow {AD} = \vec b,\overrightarrow {AE} = \vec c\). Gọi M là trung điểm của đoạn BG. Hãy biểu diễn \(\overrightarrow {AM} \) theo \(\vec a,\vec b,\vec c\).
Phương pháp giải - Xem chi tiết
Sử dụng quy tắc ba điểm, hình bình hành để biểu diễn \(\overrightarrow {AM} \) theo \(\vec a,\vec b,\vec c\).
Lời giải chi tiết
- Áp dụng quy tắc ba điểm, ta có: \(\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {BM} \)
- Vì M là trung điểm BG nên: \(\overrightarrow {AM} = \overrightarrow {AB} + \frac{1}{2}\overrightarrow {BG} \)
- Mà ABCD.EFGH là hình hộp nên: \(\overrightarrow {AM} = \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AH} = \overrightarrow {AB} + \frac{1}{2}\left( {\overrightarrow {AD} + \overrightarrow {AE} } \right) = \overrightarrow a + \frac{1}{2}\overrightarrow b + \frac{1}{2}\overrightarrow c \)
- Giải bài tập 2.5 trang 65 SGK Toán 12 tập 1 - Cùng khám phá
- Giải bài tập 2.6 trang 65 SGK Toán 12 tập 1 - Cùng khám phá
- Giải bài tập 2.7 trang 65 SGK Toán 12 tập 1 - Cùng khám phá
- Giải bài tập 2.8 trang 65 SGK Toán 12 tập 1 - Cùng khám phá
- Giải bài tập 2.9 trang 65 SGK Toán 12 tập 1 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục