Giải bài tập 2.17 trang 79 SGK Toán 12 tập 1 - Cùng khám phá


Trong không gian Oxyz, cho ba vectơ \(\vec a = (2; - 3;3)\), \(\vec b = (4;0;2)\), \(\vec c = ( - 1;4; - 5)\). Tìm: a) \(\vec a.(\vec b + 2\vec c)\); b) \(\left| {\vec a - \vec b} \right|\).

Đề bài

Trong không gian Oxyz, cho ba vectơ \(\vec a = (2; - 3;3)\), \(\vec b = (4;0;2)\), \(\vec c = ( - 1;4; - 5)\). Tìm:

a) \(\vec a.(\vec b + 2\vec c)\);

b) \(\left| {\vec a - \vec b} \right|\).

Phương pháp giải - Xem chi tiết

a) Tính toán tích vô hướng của vectơ \(\vec a\) với tổng của \(\vec b\) và \(2\vec c\).

b) Độ dài của hiệu hai vectơ được tính theo công thức:

\(\left| {\vec a - \vec b} \right| = \sqrt {{{({x_1} - {x_2})}^2} + {{({y_1} - {y_2})}^2} + {{({z_1} - {z_2})}^2}} \)

 với \(\vec a = ({x_1};{y_1};{z_1})\) và \(\vec b = ({x_2};{y_2};{z_2})\).

Lời giải chi tiết

a) Tích vô hướng:

\(\vec a.(\vec b + 2\vec c) = \vec a.\left[ {(4;0;2) + 2( - 1;4; - 5)} \right] = \vec a.(2;8; - 8)\)

\(\vec a.(\vec b + 2\vec c) = 2 \times 2 + ( - 3) \times 8 + 3 \times ( - 8) = 4 - 24 - 24 =  - 44\)

 b) Độ dài của hiệu hai vectơ:

\(\left| {\vec a - \vec b} \right| = \sqrt {{{(2 - 4)}^2} + {{( - 3 - 0)}^2} + {{(3 - 2)}^2}}  = \sqrt {{{( - 2)}^2} + {{( - 3)}^2} + {1^2}}  = \sqrt {4 + 9 + 1}  = \sqrt {14} \)


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài tập 2.18 trang 79 SGK Toán 12 tập 1 - Cùng khám phá

    Trong không gian Oxyz, cho tam giác ABC. Biết tọa độ các đỉnh là \(A(0;1;1)\), \(B(0;1;2)\), \(C( - 1;1;1)\). a) Tính độ dài các cạnh của tam giác. b) Tính \(\widehat {ABC}\).

  • Giải bài tập 2.19 trang 79 SGK Toán 12 tập 1 - Cùng khám phá

    Trong không gian Oxyz, cho hình tứ diện ABCD. Biết rằng \(A(1;0; - 1)\), \(B( - 3;2;0)\), \(C(1;1;4)\), \(D( - 2;1;5)\). a) Tìm tọa độ của điểm E sao cho \(\overrightarrow {AE} = \overrightarrow {AB} + \overrightarrow {AC} - \overrightarrow {AD} \). b) Tìm tọa độ trung điểm M của cạnh AB và trọng tâm G của tam giác ABC.

  • Giải bài tập 2.20 trang 79 SGK Toán 12 tập 1 - Cùng khám phá

    Trong không gian Oxyz, cho \(\vec a = (1;0;1)\), \(\vec b = (1;1;0)\) và \(\vec c = ( - 4;3;m)\). a) Tìm góc giữa hai vectơ \(\vec a\) và \(\vec b\). b) Tìm m để vectơ \(\vec d = 2\vec a + 3\vec b\) vuông góc với \(\vec c\).

  • Giải bài tập 2.21 trang 80 SGK Toán 12 tập 1 - Cùng khám phá

    Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.A'B'C'D' có đỉnh A trùng với gốc tọa độ và các đỉnh B, D, A' tương ứng thuộc các tia Ox, Oy, Oz như trong Hình 2.43. Cho biết AB = a, AD = 3a, AA' = 2a \ (a > 0). Gọi G là trọng tâm của tam giác A'BC. a) Tìm toạ độ điểm G. b) Tính khoảng cách từ G đến mặt phẳng (ABCD). c) Tính thể tích khóp G.ABCD.

  • Giải bài tập 2.22 trang 80 SGK Toán 12 tập 1 - Cùng khám phá

    Trong không gian Oxyz (đơn vị trên các trục là km), một máy bay đang bay ở độ cao 10 km, tại vị trí A(500; 200; 10). Theo hành trình dự định, máy bay sẽ phải bay qua vị trí B(700; 200; 10). Tuy nhiên do thời tiết xấu, máy bay phải chuyển hướng bay đến vị trí C(600; 300; 8). a) Tính khoảng cách từ A đến C. b) Hỏi trong quãng thời gian tránh vùng thời tiết xấu, máy bay đã phải bay chệch hướng dự định một góc bao nhiêu độ?

>> Xem thêm

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí