Giải bài tập 1 trang 92 SGK Toán 9 tập 1 - Cánh diều>
Cho tam giác (ABC) vuông tại (A) có đường cao (AH) và (widehat B = alpha ) (Hình 40). a) Tỉ số (frac{{HA}}{{HB}}) bằng: A. (sin alpha ). B. (cos alpha ). C. (tan alpha ). D. (cot alpha ). b) Tỉ số (frac{{HA}}{{HC}}) bằng: A. (sin alpha ). B. (cos alpha ). C. (tan alpha ). D. (cot alpha ). c) Tỉ số (frac{{HA}}{{AC}}) bằng: A. (sin alpha ). B. (cos alpha ). C. (tan alpha ). D. (cot alpha ).
Tổng hợp đề thi giữa kì 1 lớp 9 tất cả các môn - Cánh diều
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Cho tam giác \(ABC\) vuông tại \(A\) có đường cao \(AH\) và \(\widehat B = \alpha \) (Hình 40).
a) Tỉ số \(\frac{{HA}}{{HB}}\) bằng:
A. \(\sin \alpha \).
B. \(\cos \alpha \).
C. \(\tan \alpha \).
D. \(\cot \alpha \).
b) Tỉ số \(\frac{{HA}}{{HC}}\) bằng:
A. \(\sin \alpha \).
B. \(\cos \alpha \).
C. \(\tan \alpha \).
D. \(\cot \alpha \).
c) Tỉ số \(\frac{{HA}}{{AC}}\) bằng:
A. \(\sin \alpha \).
B. \(\cos \alpha \).
C. \(\tan \alpha \).
D. \(\cot \alpha \).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Dựa vào tỉ số lượng giác để giải bài toán.
Lời giải chi tiết
a) Chọn đáp án C.
b) Xét tam giác \(AHC\) vuông tại \(H\) có:
\(\tan C = \frac{{HA}}{{HC}}\).
Do \(\widehat B + \widehat C = 90^\circ \) nên \(\tan C = \cot B\).
Vậy \(\cot \alpha = \frac{{HA}}{{HC}}\).
Chọn đáp án D.
c) Xét tam giác \(AHC\) vuông tại \(H\) có:
\(\sin C = \frac{{HA}}{{AC}}\).
Do \(\widehat B + \widehat C = 90^\circ \) nên \(\sin C = \cos B\).
Vậy \(\cos \alpha = \frac{{HA}}{{AC}}\).
Chọn đáp án B.