Giải bài tập 1 trang 92 SGK Toán 9 tập 1 - Cánh diều>
Cho tam giác (ABC) vuông tại (A) có đường cao (AH) và (widehat B = alpha ) (Hình 40). a) Tỉ số (frac{{HA}}{{HB}}) bằng: A. (sin alpha ). B. (cos alpha ). C. (tan alpha ). D. (cot alpha ). b) Tỉ số (frac{{HA}}{{HC}}) bằng: A. (sin alpha ). B. (cos alpha ). C. (tan alpha ). D. (cot alpha ). c) Tỉ số (frac{{HA}}{{AC}}) bằng: A. (sin alpha ). B. (cos alpha ). C. (tan alpha ). D. (cot alpha ).
Tổng hợp Đề thi vào 10 có đáp án và lời giải
Toán - Văn - Anh
Đề bài
Cho tam giác \(ABC\) vuông tại \(A\) có đường cao \(AH\) và \(\widehat B = \alpha \) (Hình 40).
a) Tỉ số \(\frac{{HA}}{{HB}}\) bằng:
A. \(\sin \alpha \).
B. \(\cos \alpha \).
C. \(\tan \alpha \).
D. \(\cot \alpha \).
b) Tỉ số \(\frac{{HA}}{{HC}}\) bằng:
A. \(\sin \alpha \).
B. \(\cos \alpha \).
C. \(\tan \alpha \).
D. \(\cot \alpha \).
c) Tỉ số \(\frac{{HA}}{{AC}}\) bằng:
A. \(\sin \alpha \).
B. \(\cos \alpha \).
C. \(\tan \alpha \).
D. \(\cot \alpha \).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Dựa vào tỉ số lượng giác để giải bài toán.
Lời giải chi tiết
a) Chọn đáp án C.
b) Xét tam giác \(AHC\) vuông tại \(H\) có:
\(\tan C = \frac{{HA}}{{HC}}\).
Do \(\widehat B + \widehat C = 90^\circ \) nên \(\tan C = \cot B\).
Vậy \(\cot \alpha = \frac{{HA}}{{HC}}\).
Chọn đáp án D.
c) Xét tam giác \(AHC\) vuông tại \(H\) có:
\(\sin C = \frac{{HA}}{{AC}}\).
Do \(\widehat B + \widehat C = 90^\circ \) nên \(\sin C = \cos B\).
Vậy \(\cos \alpha = \frac{{HA}}{{AC}}\).
Chọn đáp án B.

