Giải bài 9.44 trang 111 SGK Toán 8 tập 2 - Kết nối tri thức >
Cho tam giác ABC vuông tại A có AB=5cm, AC=4cm.
Đề bài
Cho tam giác ABC vuông tại A có AB=5cm, AC=4cm. Gọi AH, HD lần lượt là các đường cao kẻ từ đỉnh A của tam giác ABC và đỉnh H của tam giác HAB
a) Chứng minh rằng ΔHDA ∽ ΔAHC
b) Tính độ dài các đoạn thẳng HA, HB, HC, HD
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) Chứng minh tam giác vuông HDA (vuông tại D) và tam giác vuông AHC (vuông tại H) có: \(\widehat {DHA} = \widehat {HAC}\)
b) Áp dụng định lý Pythagore trong tam giác vuông để tính HA, HB, HC, HD
Lời giải chi tiết
a) Có AB ⊥ AC, HD ⊥ AB
Suy ra HD // AC
Suy ra \(\widehat {DHA} = \widehat {HAC}\)
- Xét tam giác vuông HDA (vuông tại D) và tam giác vuông AHC (vuông tại H) có: \(\widehat {DHA} = \widehat {HAC}\)
Suy ra ΔHDA ∽ ΔAHC
b) Xét tam giác ABC có: \(A{B^2} + A{C^2} = B{C^2}\)
mà AB=5cm, AC=4cm
Suy ra \(BC = \sqrt {41} \)
- Có AH.BC=AB.AC
Suy ra \(AH = \frac{{20\sqrt {41} }}{{41}}\)
Suy ra \(H{B^2} = A{B^2} - A{H^2}\) (áp dụng định lý Pythagore trong tam giác vuông BHA)
Suy ra \(HB = \frac{{25\sqrt {41} }}{{41}}\)
Suy ra \(HC = \frac{{16\sqrt {41} }}{{41}}\)
- Xét tam giác vuông BDH và tam giác vuông BAC có: HD // AC
Suy ra ΔBDH ∽ ΔBAC
Suy ra \(\frac{{BH}}{{BC}} = \frac{{DH}}{{AC}}\)
Suy ra \(H{\rm{D}} = \frac{{100}}{{41}}\)
- Giải bài 9.45 trang 111 SGK Toán 8 tập 2 - Kết nối tri thức
- Giải bài 9.46 trang 111 SGK Toán 8 tập 2 - Kết nối tri thức
- Giải bài 9.47 trang 111 SGK Toán 8 tập 2 - Kết nối tri thức
- Giải bài 9.48 trang 111 SGK Toán 8 tập 2 - Kết nối tri thức
- Giải bài 9.43 trang 110 SGK Toán 8 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải dự án 2 trang 112 SGK Toán 8 tập 1
- Lý thuyết Hình chóp tứ giác đều SGK Toán 8 - Kết nối tri thức
- Lý thuyết Hình chóp tam giác đều SGK Toán 8 - Kết nối tri thức
- Lý thuyết Hình đồng dạng SGK Toán 8 - Kết nối tri thức
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Kết nối tri thức