Giải bài 7 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 1


Xác định số hạng đầu và công sai của cấp số cộng \(\left( {{u_n}} \right)\), biết: a) \(\left\{ \begin{array}{l}{u_1} + {u_6} = 18\\{u_3} + {u_7} = 22\end{array} \right.\); b) \(\left\{ \begin{array}{l}{u_9} - {u_4} = 15\\{u_3}.{u_8} = 184\end{array} \right.\); c) \(\left\{ \begin{array}{l}{u_6} = 8\\u_2^2 + u_4^2 = 16\end{array} \right.\).

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Xác định số hạng đầu và công sai của cấp số cộng \(\left( {{u_n}} \right)\), biết:

a) \(\left\{ \begin{array}{l}{u_1} + {u_6} = 18\\{u_3} + {u_7} = 22\end{array} \right.\);

b) \(\left\{ \begin{array}{l}{u_9} - {u_4} = 15\\{u_3}.{u_8} = 184\end{array} \right.\);

c) \(\left\{ \begin{array}{l}{u_6} = 8\\u_2^2 + u_4^2 = 16\end{array} \right.\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về số hạng tổng quát của cấp số cộng để tính: Nếu một cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai d thì số hạng tổng quát \({u_n}\) của nó được xác định bởi công thức: \({u_n} = {u_1} + \left( {n - 1} \right)d,n \ge 2\). 

Lời giải chi tiết

a) \(\left\{ \begin{array}{l}{u_1} + {u_6} = 18\\{u_3} + {u_7} = 22\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + {u_1} + 5d = 18\\{u_1} + 2d + {u_1} + 6d = 22\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 5d = 18\\2{u_1} + 8d = 22\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{{17}}{3}\\d = \frac{4}{3}\end{array} \right.\)

Vậy số hạng đầu của cấp số cộng là \(\frac{{17}}{3}\) và công sai \(d = \frac{4}{3}\).

b) \(\left\{ \begin{array}{l}{u_9} - {u_4} = 15\\{u_3}.{u_8} = 184\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 8d - {u_1} - 3d = 15\\\left( {{u_1} + 2d} \right).\left( {{u_1} + 7d} \right) = 184\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}d = 3\\\left( {{u_1} + 2.3} \right).\left( {{u_1} + 7.3} \right) = 184\left( 1 \right)\end{array} \right.\)

\(\left( 1 \right) \Leftrightarrow \left( {{u_1} + 6} \right)\left( {{u_1} + 21} \right) = 184\)\( \Leftrightarrow u_1^2 + 27{u_1} - 58 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}{u_1} = 2\\{u_1} =  - 29\end{array} \right.\)

Vậy số hạng đầu của cấp số cộng là \({u_1} = 2\) hoặc \({u_1} =  - 29\) và công sai \(d = 3\).

c) \(\left\{ \begin{array}{l}{u_6} = 8\\u_2^2 + u_4^2 = 16\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 5d = 8\\{\left( {{u_1} + d} \right)^2} + {\left( {{u_1} + 3d} \right)^2} = 16\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 8 - 5d\\{\left( {8 - 5d + d} \right)^2} + {\left( {8 - 5d + 3d} \right)^2} = 16\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 8 - 5d\\{\left( {8 - 4d} \right)^2} + {\left( {8 - 2d} \right)^2} = 16\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 8 - 5d\\20{d^2} - 96d + 112 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 8 - 5d\\\left[ \begin{array}{l}d = 2\\d = \frac{{14}}{5}\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}{u_1} =  - 2\\d = 2\end{array} \right.\\\left\{ \begin{array}{l}{u_1} =  - 6\\d = \frac{{14}}{5}\end{array} \right.\end{array} \right.\)

Vậy số hạng đầu của cấp số cộng là \( - 2\) và công sai \(d = 2\) hoặc số hạng đầu của cấp số cộng là \( - 6\) và công sai \(d = \frac{{14}}{5}\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí