Giải bài 4 trang 60 sách bài tập toán 11 - Chân trời sáng tạo tập 1>
Cho cấp số cộng \(\left( {{u_n}} \right)\), biết \({u_1} = 5\) và \(d = 3\). a) Tìm số hạng tổng quát của cấp số cộng \(\left( {{u_n}} \right)\). b) Tìm \({u_{99}}\). c) Số 1 502 là số hạng thứ bao nhiêu của cấp số cộng \(\left( {{u_n}} \right)\)? d) Cho biết \({S_n} = 34275\). Tìm n.
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Cho cấp số cộng \(\left( {{u_n}} \right)\), biết \({u_1} = 5\) và \(d = 3\).
a) Tìm số hạng tổng quát của cấp số cộng \(\left( {{u_n}} \right)\).
b) Tìm \({u_{99}}\).
c) Số 1 502 là số hạng thứ bao nhiêu của cấp số cộng \(\left( {{u_n}} \right)\)?
d) Cho biết \({S_n} = 34275\). Tìm n.
Phương pháp giải - Xem chi tiết
a, b, c) Sử dụng kiến thức về số hạng tổng quát của cấp số cộng để tính: Nếu một cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai d thì số hạng tổng quát \({u_n}\) của nó được xác định bởi công thức: \({u_n} = {u_1} + \left( {n - 1} \right)d,n \ge 2\).
d) Sử dụng kiến thức về tổng của n số hạng đầu tiên của cấp số cộng để tính: Nếu một cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai d. Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\), khi đó \({S_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2}\) hay \({S_n} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\).
Lời giải chi tiết
a) Số hạng tổng quát của cấp số cộng \(\left( {{u_n}} \right)\) là: \({u_n} = 5 + 3\left( {n - 1} \right) = 3n + 2\)
b) Ta có: \({u_{99}} = 3.99 + 2 = 299\)
c) Ta có: \(3n + 2 = 1\;502 \Leftrightarrow 3n = 1\;500 \Leftrightarrow n = 500\)
Vậy số 1 502 là số hạng thứ 500 của cấp số cộng \(\left( {{u_n}} \right)\).
d) Ta có: \({S_n} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2} \Leftrightarrow 34\;275 = \frac{{n\left[ {2.5 + 3\left( {n - 1} \right)} \right]}}{2}\)
\( \Leftrightarrow 68\;550 = 3{n^2} + 7n \Leftrightarrow 3{n^2} + 7n - 68\;550 = 0 \Leftrightarrow \left[ \begin{array}{l}n = 150\left( {TM} \right)\\n = \frac{{ - 457}}{3}\left( {KTM} \right)\end{array} \right.\)
Vậy \(n = 150\).
- Giải bài 5 trang 60 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 6 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 7 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 8 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 9 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 1
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 5 trang 162 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 4 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 3 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 2 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 1 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 5 trang 162 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 4 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 3 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 2 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 1 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1