Giải bài 6 trang 97 sách bài tập toán 9 - Chân trời sáng tạo tập 1>
Một ống thép có đường kính ngoài là 100 mm và đường kính trong là 80 mm. Tính diện tích mặt cắt ngang của ống thép đó.
Đề bài
Một ống thép có đường kính ngoài là 100 mm và đường kính trong là 80 mm. Tính diện tích mặt cắt ngang của ống thép đó.
Phương pháp giải - Xem chi tiết
Dựa vào: Diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; r) và (O; R) được tính bởi công thức: \(S = \pi ({R^2} - {r^2})\).
Lời giải chi tiết
Mặt cắt ngang của ống thép có hình vành khuyên giới hạn bởi hai đường tròn (O; 50 mm) và (O; 40 mm) nên có diện tích:
\(S = \pi ({R^2} - {r^2}) = \pi ({50^2} - {40^2}) = 900\pi \approx 2827,43(m{m^2}).\)
- Giải bài 7 trang 97 sách bài tập toán 9 - Chân trời sáng tạo tập 1
- Giải bài 8 trang 98 sách bài tập toán 9 - Chân trời sáng tạo tập 1
- Giải bài 3 trang 97 sách bài tập toán 9 - Chân trời sáng tạo tập 1
- Giải bài 5 trang 97 sách bài tập toán 9 - Chân trời sáng tạo tập 1
- Giải bài 4 trang 97 sách bài tập toán 9 - Chân trời sáng tạo tập 1
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 1 trang 98 sách bài tập toán 9 - Chân trời sáng tạo tập 2
- Giải bài 16 trang 109 sách bài tập toán 9 - Chân trời sáng tạo tập 2
- Giải bài 15 trang 109 sách bài tập toán 9 - Chân trời sáng tạo tập 2
- Giải bài 14 trang 109 sách bài tập toán 9 - Chân trời sáng tạo tập 2
- Giải bài 13 trang 109 sách bài tập toán 9 - Chân trời sáng tạo tập 2
- Giải bài 16 trang 109 sách bài tập toán 9 - Chân trời sáng tạo tập 2
- Giải bài 15 trang 109 sách bài tập toán 9 - Chân trời sáng tạo tập 2
- Giải bài 14 trang 109 sách bài tập toán 9 - Chân trời sáng tạo tập 2
- Giải bài 13 trang 109 sách bài tập toán 9 - Chân trời sáng tạo tập 2
- Giải bài 12 trang 108 sách bài tập toán 9 - Chân trời sáng tạo tập 2