Giải bài 6 trang 78 SGK Toán 8 – Cánh diều


Cho các hình bình hành ABCD và BMNP như ở Hình 67.

Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Cho các hình bình hành ABCD và BMNP như ở Hình 67. Chứng minh:

a) \(\frac{{BM}}{{BA}} = \frac{{BP}}{{BC}}\)

b)  \( \Delta{MNP} \backsim \Delta{CBA}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Dựa vào định lí Thales suy ra được các tỉ số bằng nhau.

b) Chứng minh MP // AC, suy ra các tỉ số bằng nhau của tam giác PBM và tam giác CBA

BMNP là hình bình hành suy ra các tỉ số bằng nhau của tam giác PBM và tam giác CBA

Từ đó ta suy ra điều phải chứng minh.

Lời giải chi tiết

a) Vì ABCD và BMNP là hình bình hành nên \(MN//BP\) và \(AD//BC \Rightarrow MN//AD\)

Xét tam giác ABD có \(AD//MN \Rightarrow \frac{{BM}}{{BA}} = \frac{{BN}}{{BD}}\) (1) (Định lý Thales)

Tương tự ta chứng minh được \(NP//DC \Rightarrow \frac{{BN}}{{BD}} = \frac{{BP}}{{BC}}\)(2)

Từ (1) và (2) ta có \(\frac{{BM}}{{BA}} = \frac{{BP}}{{BC}}\).

b) Ta có \(\frac{{BM}}{{BA}} = \frac{{BP}}{{BC}} \Rightarrow MP//AC\)(Định lý Thales đảo)

\( \Rightarrow \Delta PBM \backsim\Delta CBA\) (c-c-c) (3)

Vì BMNP là hình bình hành nên ta có \(\frac{{PB}}{{MN}} = \frac{{BM}}{{NP}} = \frac{{MP}}{{PM}} = 1\)

\( \Rightarrow \Delta PBM \backsim\Delta MNP\) (c-c-c) (4)

Từ (3) và (4) ta có \(\Delta MNP \backsim\Delta CBA\).


Bình chọn:
4 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí