Giải bài 4 trang 78 SGK Toán 8 – Cánh diều


Cho tam giác ABC và điểm O nằm trong tam giác. Các điểm M, N, P

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Cho tam giác ABC và điểm O nằm trong tam giác. Các điểm M, N, P lần lượt thuộc các tia OA, OB, OC sao cho \(\frac{{OA}}{{OM}} = \frac{{OB}}{{ON}} = \frac{{OC}}{{OP}} = \frac{2}{3}\). Chứng minh \(\Delta ABC \backsim\Delta MNP\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng các định lý Thales để chứng minh các tỉ số bằng nhau.

Chứng minh hai tam giác đồng dạng theo trường hợp thứ nhất.

Lời giải chi tiết

Xét tam giác MON có: \(\frac{{OA}}{{OM}} = \frac{{OB}}{{ON}} = \frac{2}{3}\) nên \(AB//MN\) (Định lý Thales đảo)

\( \Rightarrow \frac{{AB}}{{MN}} = \frac{2}{3}\) (Hệ quả của định lý Thales)

Chứng minh tương tự ta được \(\frac{{BC}}{{NP}} = \frac{2}{3};\,\,\frac{{AC}}{{MP}} = \frac{2}{3}\)

\( \Rightarrow \frac{{AB}}{{MN}} = \frac{{BC}}{{NP}} = \frac{{AC}}{{MP}}\)

 \( \Rightarrow \Delta ABC \backsim\Delta MNP\) (c-c-c)


Bình chọn:
4.2 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí