Giải bài 5 trang 23 SGK Toán 8 tập 1 - Cánh diều>
Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến x:
Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Cánh diều
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến x:
a) \(C = {\left( {3{\rm{x}} - 1} \right)^2} + {\left( {3{\rm{x}} + 1} \right)^2} - 2\left( {3{\rm{x}} - 1} \right)\left( {3{\rm{x}} + 1} \right)\)
b) \(D = {\left( {x + 2} \right)^3} - {\left( {x - 2} \right)^3} - 12\left( {{x^2} + 1} \right)\)
c) \(E = \left( {x + 3} \right)\left( {{x^2} - 3{\rm{x}} + 9} \right) - \left( {x - 2} \right)\left( {{x^2} + 2{\rm{x}} + 4} \right)\)
d) \(G = \left( {2{\rm{x}} - 1} \right)\left( {4{{\rm{x}}^2} + 2{\rm{x}} + 1} \right) - 8\left( {x + 2} \right)\left( {{x^2} - 2{\rm{x}} + 4} \right)\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Áp dụng các hằng đẳng thức đã học để rút gọn các biểu thức có giá trị là một số không chứa biến.
Lời giải chi tiết
a) Ta có:
\(\begin{array}{l}C = {\left( {3{\rm{x}} - 1} \right)^2} + {\left( {3{\rm{x}} + 1} \right)^2} - 2\left( {3{\rm{x}} - 1} \right)\left( {3{\rm{x}} + 1} \right)\\C = {\left( {3{\rm{x}} - 1} \right)^2} - 2\left( {3{\rm{x}} - 1} \right)\left( {3{\rm{x}} + 1} \right) + {\left( {3{\rm{x}} + 1} \right)^2}\\C = {\left( {3{\rm{x}} - 1 - 3{\rm{x}} - 1} \right)^2}\\C = {\left( { - 2} \right)^2} = 4\end{array}\)
Vậy giá trị của biểu thức C = 4 không phụ thuộc vào biến x
b) Ta có:
\(\begin{array}{l}D = {\left( {x + 2} \right)^3} - {\left( {x - 2} \right)^3} - 12\left( {{x^2} + 1} \right) \\D = \left( {x + 2 - x + 2} \right)\left[ {{{\left( {x + 2} \right)}^2} + \left( {x + 2} \right)\left( {x - 2} \right) + {{\left( {x - 2} \right)}^2}} \right] - 12{{\rm{x}}^2} - 12\\D = 4.\left( {{x^2} + 4{\rm{x}} + 4 + {x^2} - 4 + {x^2} - 4{\rm{x}} + 4} \right) - 12{{\rm{x}}^2} - 12\\D = 4.\left( {3{{\rm{x}}^2} + 4} \right) - 12{{\rm{x}}^2} - 12\\D = 12{{\rm{x}}^2} + 16 - 12{{\rm{x}}^2} - 12 = 4\end{array}\)
Vậy giá trị của biểu thức D = 4 không phụ thuộc vào biến x
c) Ta có:
\(\begin{array}{l}E = \left( {x + 3} \right)\left( {{x^2} - 3{\rm{x}} + 9} \right) - \left( {x - 2} \right)\left( {{x^2} + 2{\rm{x}} + 4} \right)\\E = \left( {{x^3} + {3^3}} \right) - \left( {{x^3} - {2^2}} \right)\\E = {x^3} + 27 - {x^3} + 8 = 35\end{array}\)
Vậy giá trị của biểu thức E = 35 không phụ thuộc vào biến x
d) Ta có:
\(\begin{array}{l}G = \left( {2{\rm{x}} - 1} \right)\left( {4{{\rm{x}}^2} + 2{\rm{x}} + 1} \right) - 8\left( {x + 2} \right)\left( {{x^2} - 2{\rm{x}} + 4} \right)\\G = \left[ {{{\left( {2{\rm{x}}} \right)}^3} - {1^3}} \right] - 8\left( {{x^3} + {2^3}} \right)\\G = 8{{\rm{x}}^3} - 1 - 8{{\rm{x}}^3} - 64 = - 65\end{array}\)
Vậy giá trị của biểu thức G = -65 không phụ thuộc vào biến x.
- Giải bài 6 trang 23 SGK Toán 8 tập 1 - Cánh diều
- Giải bài 4 trang 23 SGK Toán 8 tập 1 - Cánh diều
- Giải bài 3 trang 23 SGK Toán 8 tập 1 - Cánh diều
- Giải bài 2 trang 23 SGK Toán 8 tập 1 - Cánh diều
- Giải bài 1 trang 23 SGK Toán 8 tập 1 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục