Giải bài 5 trang 22 sách bài tập toán 10 - Cánh diều>
Tổng số hạt p, n, e trong hai nguyên tử kim loại A và B là 177. Trong đó số hạt mang điện nhiều hơn số hạt không mang điện là 47.
Đề bài
Tổng số hạt p, n, e trong hai nguyên tử kim loại A và B là 177. Trong đó số hạt mang điện nhiều hơn số hạt không mang điện là 47. Số hạt mang điện của nguyên tử B nhiều hơn của nguyên tử A là 8. Xác định số hạt proton trong một nguyên tử A.
Phương pháp giải - Xem chi tiết
Bước 1: Lập hệ phương trình
+ Chọn ẩn và đặt điều kiện cho ẩn
+ Biểu diễn các đại lượng chưa biết theo ẩn và đại lượng đã biết
+ Lập các phương trình biểu thị mối quan hệ giữa các đại lượng
Bước 2: Giải hệ phương trình
Bước 3: Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thích hợp với bài toán và kết luận.
Lời giải chi tiết
Gọi \({Z_A},{N_A}\) lần lượt là số lượng hạt p, n của nguyên tử A;
\({Z_B},{N_B}\) lần lượt là số lượng hạt p, n của nguyên tử B.
Theo giả thiết, tổng số hạt p, n, e là 177 nên ta có:
\(2{Z_A} + {N_A} + 2{Z_B} + {N_B} = 177\)
Do số hạt mang điện nhiều hơn số hạt không mang điện là 47 nên ta có:
\(\left( {2{Z_A} + 2{Z_B}} \right) - \left( {{N_A} + {N_B}} \right) = 47\)
Số hạt mang điện của nguyên tử B nhiều hơn của nguyên tử A là 8 nên ta có:
\(2{Z_B} - 2{Z_A} = 8\)
Đặt \(N = {N_A} + {N_B}\), ta được hệ phương trình:
\(\left\{ \begin{array}{l}2{Z_A} + 2{Z_B} + N = 177\\2{Z_A} + 2{Z_B} - N = 47\\ - 2{Z_A} + 2{Z_B} = 8\end{array} \right.\)
Dùng máy tính cầm tay giải hệ, ta được \({Z_A} = 26;{Z_B} = 30;N = 65\)
Vậy số hạt proton trong một nguyên tử A là 26.
- Giải bài 6 trang 22 sách bài tập toán 10 - Cánh diều
- Giải bài 7 trang 22 sách bài tập toán 10 - Cánh diều
- Giải bài 8 trang 22 sách bài tập toán 10 - Cánh diều
- Giải bài 9 trang 22 sách bài tập toán 10 - Cánh diều
- Giải bài 10 trang 22 sách bài tập toán 10 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục