Giải bài 2 trang 14 sách bài tập toán 9 - Chân trời sáng tạo tập 1


Giải các hệ phương trình: a) (left{ {begin{array}{*{20}{c}}{3x - 2y = 10}{x - frac{2}{3}y = 3frac{1}{3}}end{array}} right.) b) (left{ {begin{array}{*{20}{c}}{frac{x}{y} = frac{2}{3}}{x + y + 10 = 0}end{array}} right.) c) (left{ {begin{array}{*{20}{c}}{x - sqrt 3 y = 0}{sqrt 3 x - 2y = 2}end{array}} right.) d) (left{ {begin{array}{*{20}{c}}{sqrt 3 x - sqrt 5 y = 2}{sqrt 5 x - 3sqrt 3 y = 2sqrt {15} }end{array}} right.)

Đề bài

Giải các hệ phương trình:

a) \(\left\{ {\begin{array}{*{20}{c}}{3x - 2y = 10}\\{x - \frac{2}{3}y = 3\frac{1}{3}}\end{array}} \right.\)

b) \(\left\{ {\begin{array}{*{20}{c}}{\frac{x}{y} = \frac{2}{3}}\\{x + y + 10 = 0}\end{array}} \right.\)

c) \(\left\{ {\begin{array}{*{20}{c}}{x - \sqrt 3 y = 0}\\{\sqrt 3 x - 2y = 2}\end{array}} \right.\)

d) \(\left\{ {\begin{array}{*{20}{c}}{\sqrt 3 x - \sqrt 5 y = 2}\\{\sqrt 5 x - 3\sqrt 3 y = 2\sqrt {15} }\end{array}} \right.\)

Phương pháp giải - Xem chi tiết

Dựa vào: Biến đổi hệ phương trình dạng \(\left\{ {\begin{array}{*{20}{c}}{ax + by = c(1)}\\{a'x + b'y = c'(2)}\end{array}} \right.\) rồi giải hệ.

Giải hệ phương trình bằng phương pháp thế

B1: Từ 1 phương trình của hệ, ta biểu diễn ẩn này theo ẩn kia, rồi thế vào phương trình còn lại của hệ để nhận được một phương trình một ẩn.

B2: Giải phương trình một ẩn đó rồi suy ra nghiệm của hệ.

Giải hệ phương trình bằng phương pháp cộng đại số

B1: Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của một ẩn nào đó trong hai phương trình của hệ bằng nhau hoặc đối nhau.

B2: Cộng hay trừ từng vế hai phương trình của hệ để được một phương trình một ẩn và giải phương trình đó.

B3: Thế giá trị của ẩn vừa tìm được ở B2 và một trong hai phương trình của hệ đã cho để tìm giá trị của ẩn còn lại. Kết luận nghiệm của hệ.

Lời giải chi tiết

a) \(\left\{ {\begin{array}{*{20}{c}}{3x - 2y = 10}\\{x - \frac{2}{3}y = 3\frac{1}{3}}\end{array}} \right.\)

\(\left\{ {\begin{array}{*{20}{c}}{3x - 2y = 10}\\{3x - 2y = 10}\end{array}} \right.\)

Hệ phương trình có vô số nghiệm

Các nghiệm của hệ được viết như sau:

\(\left\{ {\begin{array}{*{20}{c}}{x \in \mathbb{R}}\\{y = \frac{3}{2}x - 5}\end{array}} \right.\)

b) \(\left\{ {\begin{array}{*{20}{c}}{\frac{x}{y} = \frac{2}{3}}\\{x + y + 10 = 0}\end{array}} \right.\)

\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{3x - 2y = 0}\\{x + y =  - 10}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{3x - 2y = 0}\\{2x + 2y =  - 20}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{3x - 2y = 0}\\{5x =  - 20}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{y =  - 6}\\{x =  - 4}\end{array}} \right.\end{array}\)

Vậy hệ phương trình có nghiệm duy nhất là (-4; -6).

c) \(\left\{ {\begin{array}{*{20}{c}}{x - \sqrt 3 y = 0}\\{\sqrt 3 x - 2y = 2}\end{array}} \right.\)

\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{x = \sqrt 3 y}\\{\sqrt 3 x - 2y = 2}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{x = 2\sqrt 3 }\\{y = 2}\end{array}} \right.\end{array}\)

Vậy hệ phương trình có nghiệm duy nhất là (\(2\sqrt 3 \); 2).

d) \(\left\{ {\begin{array}{*{20}{c}}{\sqrt 3 x - \sqrt 5 y = 2}\\{\sqrt 5 x - 3\sqrt 3 y = 2\sqrt {15} }\end{array}} \right.\)

\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{ - \sqrt {15} x + 5y =  - 2\sqrt 5 }\\{\sqrt {15} x - 9y = 6\sqrt 5 }\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{ - \sqrt {15} x + 5y =  - 2\sqrt 5 }\\{ - 4y = 4\sqrt 5 }\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{x =  - \sqrt 3 }\\{y =  - \sqrt 5 }\end{array}} \right.\end{array}\)

Vậy hệ phương trình có nghiệm duy nhất là \(( - \sqrt 3 ; - \sqrt 5 )\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Chân trời sáng tạo - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí