Giải bài 16 trang 9 sách bài tập toán 10 - Cánh diều


Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của mỗi mệnh đề phủ định đó.

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của mỗi mệnh đề phủ định đó.

a) \(\forall n \in \mathbb{N},n(n + 1)\) chia hết cho 2;

b) \(\forall x \in \mathbb{R},{x^2} > x\)

c) \(\exists x \in \mathbb{R},\left| x \right| > x\)

d) \(\exists x \in \mathbb{Q},{x^2} - x - 1 = 0\)

Phương pháp giải - Xem chi tiết

Mệnh đề phủ định của mệnh đề “\(\forall x \in X,P(x)\)” là “\(\exists x \in X,\overline {P(x)} \)”

Mệnh đề phủ định của mệnh đề “\(\exists x \in X,P(x)\)” là “\(\forall x \in X,\overline {P(x)} \)”

Lời giải chi tiết

a) Mệnh đề phủ định: \(\exists n \in \mathbb{N},n(n + 1)\) không chia hết cho 2;

Mệnh đề này sai.

b) Mệnh đề phủ định: \(\exists x \in \mathbb{R},{x^2} \le x\)

Mệnh đề này đúng, chẳng hạn \(x = 1\)

c) Mệnh đề phủ định: \(\forall x \in \mathbb{R},\left| x \right| \le x\)

Mệnh đề này sai, ví dụ \(x =  - 2\)

d) Mệnh đề phủ định: \(\forall x \in \mathbb{Q},{x^2} - x - 1 \ne 0\)

Mệnh đề này đúng, vì \({x^2} - x - 1 = 0 \Leftrightarrow x = \frac{{1 \pm \sqrt 5 }}{2} \notin \mathbb{Q}\)


Bình chọn:
3.7 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí