Giải bài 1 trang 30 vở thực hành Toán 8


Khai triển a) \({\left( {{x^2}\; + 2y} \right)^3}\);

Đề bài

Khai triển

a) \({\left( {{x^2}\; + 2y} \right)^3}\);

b) \({\left( {\frac{1}{2}x - 1} \right)^3}.\)

Phương pháp giải - Xem chi tiết

- Sử dụng hằng đẳng thức lập phương của một tổng: \({(a + b)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\)

- Sử dụng hằng đẳng thức lập phương của một hiệu: \({(a - b)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\)

Lời giải chi tiết

a) Ta có \({\left( {{x^2}\; + 2y} \right)^3}\; = {\left( {{x^2}} \right)^3}\; + 3.{\left( {{x^2}} \right)^2}.2y + 3.{x^2}.{\left( {2y} \right)^2}\; + {\left( {2y} \right)^3}\)

\( = {x^6}\; + 6{x^4}y + 12{x^2}{y^2}\; + 8{y^3}\).

b) Ta có \({\left( {\frac{1}{2}x - 1} \right)^3} = {\left( {\frac{1}{2}x} \right)^3} - 3 \cdot {\left( {\frac{1}{2}x} \right)^2} \cdot 1 + 3 \cdot \frac{1}{2}x \cdot {1^2} - {1^3}\)

\( = \frac{1}{8}{x^3} - \frac{3}{4}{x^2} + \frac{3}{2}x - 1\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí