Giải bài 1 trang 121 vở thực hành Toán 8 tập 2


Thực hiện phép tính: (a){left( {2{rm{x}} + y} right)^2} + {left( {5{rm{x}} - y} right)^2} + 2left( {2{rm{x}} + y} right)left( {5{rm{x}} - y} right))

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Thực hiện phép tính:

\(a){\left( {2{\rm{x}} + y} \right)^2} + {\left( {5{\rm{x}} - y} \right)^2} + 2\left( {2{\rm{x}} + y} \right)\left( {5{\rm{x}} - y} \right)\)

\(b)\left( {2{\rm{x}} - {y^3}} \right)\left( {2{\rm{x}} + {y^3}} \right) - \left( {2{\rm{x}} - {y^2}} \right)\left( {4{{\rm{x}}^2} + 2{\rm{x}}{y^2} + {y^4}} \right)\)

Phương pháp giải - Xem chi tiết

Áp dụng các công thức nhân đa thức với đa thức và các hằng đẳng thức đã học để thực hiện phép tính

Lời giải chi tiết

a) Cách 1.

\(\begin{array}{l}{\left( {2{\rm{x}} + y} \right)^2} + {\left( {5{\rm{x}} - y} \right)^2} + 2\left( {2{\rm{x}} + y} \right)\left( {5{\rm{x}} - y} \right)\\ = \left( {4{{\rm{x}}^2} + 4{\rm{x}}y + {y^2}} \right) + \left( {25{{\rm{x}}^2} - 10{\rm{x}}y + {y^2}} \right) + 2.\left( {10{{\rm{x}}^2} - 2{\rm{x}}y + 5{\rm{x}}y - {y^2}} \right)\\ = 4{{\rm{x}}^2} + 4{\rm{x}}y + {y^2} + 25{{\rm{x}}^2} - 10{\rm{x}}y + {y^2} + 20{{\rm{x}}^2} - 4{\rm{x}}y + 10xy - 2{y^2}\\ = \left( {4{x^2} + 25{x^2} + 20{x^2}} \right) + \left( {4xy - 10xy + 10xy - 4xy} \right) + \left( {{y^2} + {y^2} - 2{y^2}} \right)\\ = 49{{\rm{x}}^2}\end{array}\)

Cách 2. Đặt A = 2x + y và B = 5x – y, ta có:

\(\begin{array}{l}{\left( {2{\rm{x}} + y} \right)^2} + {\left( {5{\rm{x}} - y} \right)^2} + 2\left( {2{\rm{x}} + y} \right)\left( {5{\rm{x}} - y} \right)\\ = {A^2} + {B^2} + 2AB = {\left( {A + B} \right)^2}\end{array}\).

Mặt khác, A + B = 7x. Do đó \({\left( {A + B} \right)^2} = 49{x^2}\).

Vậy \({\left( {2{\rm{x}} + y} \right)^2} + {\left( {5{\rm{x}} - y} \right)^2} + 2\left( {2{\rm{x}} + y} \right)\left( {5{\rm{x}} - y} \right) = 49{x^2}\).

b) Biểu thức đã cho có dạng M – N, trong đó:

\(M = \left( {2x - {y^3}} \right)\left( {2x + {y^3}} \right)\)\(N = \left( {2x - {y^2}} \right)\left( {4{x^2} + 2x{y^2} + {y^4}} \right)\)

Ta có: M = 4x2 – y6

N = 8x3 – y6

Do đó M – N = -8x3 + 4x2.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí