Đề số 40 - Đề thi vào lớp 10 môn Toán


Đề thi vào lớp 10 môn Toán - Đề số 40 có đáp án và lời giải chi tiết

Đề bài

Bài 1 (2 điểm):

a) Tính giá trị biểu thức: \(A = 3\sqrt {27}  - 2\sqrt {12}  + 4\sqrt {48} .\)        

b) Rút gọn biểu thức: \(B = \sqrt {7 - 4\sqrt 3 }  + \dfrac{1}{{2 - \sqrt 3 }}.\)

Bài 2 (2,5 điểm): Giải các phương trình và hệ phương trình sau:

a) \({x^2} - 3x + 2 = 0\)                     

b) \({x^2} - 2\sqrt 3 x + 3 = 0\)

c) \({x^4} - 9{x^2} = 0\)                       

d) \(\left\{ \begin{array}{l}x - y = 3\\3x - 2y = 8\end{array} \right.\)

Bài 3 (1,5 điểm):

a)  Trong mặt phẳng tọa độ Oxy, cho Parabol (P): \(y = {x^2}\) . Vẽ đồ thị Parabol  (P).

b)  Cho phương trình: \({x^2} - \left( {m - 1} \right)x - m = 0\,\,\,\left( 1 \right)\)  ( với x là ẩn số, m là tham số). Xác định các giá trị của m để phương trình (1) có hai nghiệm phân biệt \({x_1};{x_2}\)  thỏa mãn điều kiện:  \({x_1}\left( {3 - {x_2}} \right) + 20 \ge 3\left( {3 - {x_2}} \right)\)

Bài 4 (3 điểm):

Quãng đường AB dài 160 km. Hai xe khởi hành cùng một lúc từ A để đi đến B. Vận tốc của xe thứ nhất lớn hơn vận tốc của xe thứ hai là 10 km/h nên xe thứ nhất đến B sớm hơn xe thứ hai là 48 phút. Tính vận tốc của xe thứ hai.

Bài 5 (1.0 điểm):

Cho tam giác ABC vuông tại A, đường cao AH. Gọi M là trung điểm của BC. Biết AB = 3 cm, AC = 4cm. Tính độ dài đường cao AH và diện tích tam giác ABM.

Bài 6 (2.5 điểm):

Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O; R). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H. Gọi M là trung điểm của BC.

a) Chứng minh tứ giác BFHD nội tiếp được đường tròn.

b) Biết \(\widehat {EBC} = {30^0}.\) Tính số đo \(\widehat {EMC}\) .

c) Chứng minh \(\widehat {FDE} = \widehat {FME}\)

Bài 7 (0,5 điểm):    Cho \(a = \dfrac{{\sqrt 2  - 1}}{2};b = \dfrac{{\sqrt 2  + 1}}{2}.\) Tính \({a^7} + {b^7}\)

Lời giải chi tiết

Bài 1:

a) Tính giá trị biểu thức: \(A = 3\sqrt {27}  - 2\sqrt {12}  + 4\sqrt {48} .\)

\(\begin{array}{l}A = 3\sqrt {27}  - 2\sqrt {12}  + 4\sqrt {48} \\\;\;\; = 3\sqrt {{3^2}.3}  - 2\sqrt {{2^2}.3}  + 4.\sqrt {{4^2}.3} \\\;\;\; = 9\sqrt 3  - 4\sqrt 3  + 16\sqrt 3 \\\;\;\; = 21\sqrt 3 .\end{array}\)

Vậy \(A = 21\sqrt 3 .\)

b) Rút gọn biểu thức: \(B = \sqrt {7 - 4\sqrt 3 }  + \dfrac{1}{{2 - \sqrt 3 }}.\)

\(\begin{array}{l}B = \sqrt {7 - 4\sqrt 3 }  + \dfrac{1}{{2 - \sqrt 3 }} \\\;\;\;= \sqrt {{2^2} - 2.2\sqrt 3  + {{\left( {\sqrt 3 } \right)}^2}}  + \dfrac{{2 + \sqrt 3 }}{{\left( {2 - \sqrt 3 } \right)\left( {2 + \sqrt 3 } \right)}}\\\;\;\; = \sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}}  + 2 + \sqrt 3  \\\;\;\;= 2 - \sqrt 3  + 2 + \sqrt 3  = 4.\\\;\;\;\left( {do\;\;2 - \sqrt 3  > 0} \right)\end{array}\)

Vậy B = 4.

Bài 2:

\(a)\;\;{x^2} - 3x + 2 = 0\)

Ta có: \(a + b + c = 1 - 3 + 2 = 0\) nên phương trình đã cho luôn có hai nghiệm phân biệt là: \({x_1} = 1;{x_2} = \dfrac{c}{a} = 2\)

Vậy tập nghiệm của phương trình là: \(S = \left\{ {1;2} \right\}\) .

\(\begin{array}{l}b)\;\;{x^2} - 2\sqrt 3 x + 3 = 0\\ \Leftrightarrow {\left( {x - \sqrt 3 } \right)^2} = 0\\ \Leftrightarrow x = \sqrt 3 .\end{array}\)

Vậy tập nghiệm của phương trình là: \(S = \left\{ {\sqrt 3 } \right\}\)

\(c)\;\;{x^4} - 9{x^2} = 0\\ \Leftrightarrow {x^2}\left( {{x^2} - 9} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 3\\x = 3\end{array} \right..\)

Vậy tập nghiệm của phương trình là: \(S = \left\{ { - 3;0;3} \right\}\)

\(d)\;\;\left\{ \begin{array}{l}x - y = 3\\3x - 2y = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x - 3y = 9\\3x - 2y = 8\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y =  - 1\\x = 3 + y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y =  - 1\\x = 2\end{array} \right.\)

Vậy hệ phương trình đã cho có một nghiệm duy nhất: \(\left( {x;y} \right) = \left( {2; - 1} \right)\)

Bài 3:

a) Trong mặt phẳng tọa độ Oxy, cho Parabol (P): \(y = {x^2}\) . Vẽ đồ thị Parabol  (P).

Bảng giá trị

x

\( - 2\)

\( - 1\)

0

1

2

y

4

1

0

1

4

Khi đó đồ thị hàm số đã cho  là 1 đường cong và đi qua các điểm \(A\left( { - 2;4} \right);B\left( { - 1;1} \right);C\left( {1;1} \right);D\left( {2;4} \right);O\left( {0;0} \right)\)

b) Cho phương trình: \({x^2} - \left( {m - 1} \right)x - m = 0\,\,\,\left( 1 \right)\)  (với x là ẩn số, m là tham số). Xác định các giá trị của m để phương trình (1) có hai nghiệm phân biệt \({x_1};{x_2}\)  thỏa mãn điều kiện: \({x_1}\left( {3 - {x_2}} \right) + 20 \ge 3\left( {3 - {x_2}} \right)\)

+) Phương trình có hai nghiệm phân biệt

 \(\begin{array}{l} \Leftrightarrow \Delta  > 0 \Leftrightarrow {\left( {m - 1} \right)^2} + 4m > 0\\ \Leftrightarrow {m^2} + 2m + 1 > 0\\ \Leftrightarrow {\left( {m + 1} \right)^2} > 0\\ \Leftrightarrow m \ne  - 1\end{array}\)

+) Áp dụng hệ thức Vi-et cho phương trình (1) ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = m - 1\\{x_1}.{x_2} =  - m\end{array} \right.\)

Theo đầu bài ta có

 \(\begin{array}{l}{x_1}\left( {3 - {x_2}} \right) + 20 \ge 3\left( {3 - {x_2}} \right)\\ \Leftrightarrow 3{x_1} - {x_1}{x_2} + 20 \ge 9 - 3{x_2}\\ \Leftrightarrow 3\left( {{x_1} + {x_2}} \right) - {x_1}{x_2} + 11 \ge 0\\ \Leftrightarrow 3.\left( {m - 1} \right) + m + 11 \ge 0\\ \Leftrightarrow 4m + 8 \ge 0\\ \Leftrightarrow m \ge  - 2\end{array}\)

Kết hợp với điều kiện \(m \ne  - 1\)  ta có: \(m \ge  - 2;m \ne  - 1\) thỏa mãn yêu cầu bài toán.

Bài 4:

Quãng đường AB dài 160 km. Hai xe khởi hành cùng một lúc từ A để đi đến B. Vận tốc của xe thứ nhất lớn hơn vận tốc của xe thứ hai là 10 km/h nên xe thứ nhất đến B sớm hơn xe thứ hai là 48 phút. Tính vận tốc của xe thứ hai.

Gọi vận tốc của xe thứ hai là \(x\left( {km/h} \right),\,\,\left( {x > 0} \right)\)

Vận tốc của xe thứ nhất là: \(x + 10\left( {km/h} \right)\)

Thời gian  xe thứ nhất đi hết quãng đường AB là:: \(\dfrac{{160}}{{x + 10}}\left( h \right)\)

Thời gian xe thứ hai đi hết quãng đường AB là: \(\dfrac{{160}}{x}\,\,\left( h \right)\)

Ta có xe thứ nhất đến B sớm hơn xe thứ hai là 48 phút: \( = \dfrac{{48}}{{60}} = \dfrac{4}{5}\,\,\left( h \right)\)

Theo bài ra ta có phương trình:

\(\begin{array}{l}\;\;\;\;\;\dfrac{{160}}{x} - \dfrac{{160}}{{x + 10}} = \dfrac{4}{5}\\ \Leftrightarrow 160.5.\left( {x + 10} \right) - 160.5.x = 4x\left( {x + 10} \right)\\ \Leftrightarrow 800x + 8000 - 800x = 4{x^2} + 40x\\ \Leftrightarrow {x^2} + 10x - 2000 = 0\\ \Leftrightarrow \left( {x - 40} \right)\left( {x + 50} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 40 = 0\\x + 50 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 40\left( {tm} \right)\\x =  - 50\left( {ktm} \right)\end{array} \right.\end{array}\)

Vậy xe thứ hai đi với vận tốc là: 40km/h.

Bài 5:

Áp dụng hệ thức lượng trong tam giác vuông ABC ta có:

\(\dfrac{1}{{A{H^2}}} = \dfrac{1}{{A{B^2}}} + \dfrac{1}{{A{C^2}}} = \dfrac{1}{{{3^2}}} + \dfrac{1}{{{4^2}}} = \dfrac{{25}}{{144}}\)

\(\Rightarrow AH = 2,4cm\)

Áp dụng định lý Pytago trong tam giác vuông ABC có

\(B{C^2} = A{B^2} + A{C^2} = {3^2} + {4^2} = 25\)

\(\Rightarrow BC = 5\left( {cm} \right)\)

Do M là trung điểm của BC nên ta có: \(BM = \dfrac{1}{2}BC = \dfrac{5}{2} = 2,5\left( {cm} \right)\)

Xét tam giác ABM có đường cao AH ta có: \({S_{ABM}} = \dfrac{1}{2}AH.BM = \dfrac{1}{2}.2,4.2,5 = 3\left( {c{m^2}} \right)\)

Bài 6:

              

a) Chứng minh tứ giác BFHD nội tiếp được đường tròn.

Ta có: AD, CF lần lượt là các đường cao của tam giác ABC nên: \(\widehat {ADB} = \widehat {BFC} = {90^0}\)\(\,\,\left( {hay\,\,\,\widehat {HDB} = \widehat {BFH} = {{90}^0}\,\,} \right)\)

Nên: \(\widehat {BFH} + \widehat {BDH} = {180^0}\)

Suy ra tứ giác BFHD nội tiếp được đường tròn đường kính BH với tâm là trung điểm của BH. (tổng 2 góc đối trong 1 tứ giác bằng \({180^0}\)

b) Biết \(\widehat {EBC} = {30^0}.\) Tính số đo \(\widehat {EMC}\) .

Ta có: \(\widehat {EBC} = {30^0}\) \( \Rightarrow \widehat {BCE} = {90^0} - {30^0} = {60^0}\,\,\left( {BE \bot EC\,} \right)\)

Xét tam giác vuông BEC vuông tại E có EM là trung tuyến nên: \(EM = MC = MB = \dfrac{1}{2}BC\)

Nên tam giác EMC là tam giác đều khi đó ta có: \(\widehat {EMC} = {60^0}\)

Vậy \(\widehat {EMC} = {60^0}\)

c) Chứng minh \(\widehat {FDE} = \widehat {FME}\)

Xét tứ giác BFEC ta có: \(\widehat {BFC} = \widehat {BEC} = {90^0}\left( {gt} \right)\)

Mà 2 đỉnh E, F kề nhau cùng nhìn cạnh BC dưới 1 góc vuông nên tứ giác BFEC nội tiếp.

\( \Rightarrow \widehat {EFC} = \widehat {EBC}\left( {\,hay\,\,\widehat {EFH} = \widehat {HBD}} \right)\) (2 góc nội tiếp cùng chắn cung EC) (1)

Mà tứ giác BFHD nội tiếp đường tròn (chứng minh câu a)

\( \Rightarrow \widehat {HBD} = \widehat {HFD}\) (2 góc nội tiếp cùng chắn cung HD)  (2)

Từ (1) và (2) ta có: \(\widehat {EFH} = \widehat {HFD}\).

Mà \(\widehat {EFH} = \widehat {HAE}\) (tứ giác AFHE nội tiếp)

\(\widehat {HFD} = \widehat {HBD}\) (tứ giác BFHD nội tiếp)

Từ đó ta có:

\(\widehat {DFE} = \widehat {DFH} + \widehat {HFE} = 2\widehat {HAE} \)\(\,= 2\left( {{{90}^0} - \widehat {MEC}} \right) = {180^0} - 2\widehat {MEC} \)\(\,= \widehat {EMC}\) (do tam giác MEC cân tại M)

Xét tứ giác DFEM ta có: \(\widehat {DFE} = \widehat {EMC}\) nên tứ giác DFEM nội tiếp.

Vậy ta có: \(\widehat {FDE} = \widehat {FME}\)

Bài 7:

Ta có:

 \(\begin{array}{l}a + b = \dfrac{{\sqrt 2  - 1}}{2} + \dfrac{{\sqrt 2  + 1}}{2} = \sqrt 2 \\a.b = \dfrac{{\sqrt 2  - 1}}{2}.\dfrac{{\sqrt 2  + 1}}{2} = \dfrac{1}{4}\end{array}\)

\({a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab = {\left( {\sqrt 2 } \right)^2} - 2.\dfrac{1}{4} = \dfrac{3}{2}\)

\({a^4} + {b^4} = {\left( {{a^2} + {b^2}} \right)^2} - 2{a^2}{b^2} \)\(\,= {\left( {\dfrac{3}{2}} \right)^2} - 2.{\left( {\dfrac{1}{4}} \right)^2} = \dfrac{{17}}{8}\)

\({a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right)\)\(\, = {\left( {\sqrt 2 } \right)^3} - 3\dfrac{1}{4}.\sqrt 2  = \dfrac{{5\sqrt 2 }}{4}\)

Do đó: \({a^7} + {b^7} = \left( {{a^3} + {b^3}} \right)\left( {{a^4} + {b^4}} \right) - {a^3}{b^3}\left( {a + b} \right) \)\(\,= \dfrac{{5\sqrt 2 }}{4}.\dfrac{{17}}{8} - {\left( {\dfrac{1}{4}} \right)^3}.\sqrt 2  = \dfrac{{169\sqrt 2 }}{{64}}\)

Loigiaihay.com

 

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - ĐỀ THI VÀO LỚP 10 MÔN TOÁN

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài