Đề kiểm tra 15 phút - Chương 3 - Đề số 3 - Hình học 10


Đáp án và lời giải chi tiết Đề kiểm tra 15 phút - Chương 3 - Đề số 3 - Hình học 10

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Câu 1. Một tam giác cân có cạnh đáy và một cạnh bên có phương trình lần lượt là \(x - y + 5 = 0\) và \(x + 2y - 1 = 0\) .Viết phương trình tham số của cạnh bên còn lại, biết rằng nó đi qua điểm \(\left( {11;1} \right)\).

Câu 2. Viết phương trình tổng quát của đường thẳng song song với đường thẳng \(\Delta :\left\{ \matrix{  x = 2t - 3 \hfill \cr  y = t - 5 \hfill \cr}  \right.\) và cách điểm \(A(1;1)\) một khoảng bằng \(3\sqrt 5 \)

Lời giải chi tiết

Câu 1.

Phương trình cạnh bên cần tìm dạng

\(a\left( {x - 11} \right) + b\left( {y - 1} \right)\)

\(\Leftrightarrow ax + by - 11a - b = 0\)\(\,\left( {{a^2} + {b^2} \ne 0} \right)\).

\(\eqalign{  & \cos B = \cos C \cr&\Leftrightarrow {{\left| {a - b} \right|} \over {\sqrt 2 .\sqrt {{a^2} + {b^2}} }} = {{\left| {1 - 2} \right|} \over {\sqrt 2 .\sqrt 5 }}  \cr  &  \Leftrightarrow \sqrt 5 \left| {a - b} \right| = \sqrt {{a^2} + {b^2}}   \cr  &  \Leftrightarrow 5\left( {{a^2} - 2ab + {b^2}} \right) = {a^2} + {b^2}  \cr  &  \Leftrightarrow 2{a^2} - 5ab + 2{b^2} = 0 \cr} \)

\(\begin{array}{l}
\Leftrightarrow \left( {2{a^2} - 4ab} \right) - \left( {ab - 2{b^2}} \right) = 0\\
\Leftrightarrow 2a\left( {a - 2b} \right) - b\left( {a - 2b} \right) = 0\\
\Leftrightarrow \left( {2a - b} \right)\left( {a - 2b} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
2a - b = 0\\
a - 2b = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
b = 2a\\
a = 2b
\end{array} \right.
\end{array}\)

+) Với b = 2a thì chọn \(a = \dfrac{1 }{ 2},b = 1\) ta có đường thẳng \(\dfrac{1}{ 2}x + y - \dfrac{13} {2} = 0 \) \(\Leftrightarrow x + 2y - 13 = 0\).

Đường thẳng này song song với cạnh bên đã cho nên loại.

+) Với a=2b thì chọn \(a = 2, b = 1\) ta có đường thẳng \(2x + y - 23 = 0\)

Đây là phương trình cạnh bên còn lại.

Câu 2. Đường thẳng \(\Delta \) có véc tơ chỉ phương \(\overrightarrow u  = \left( {2;1} \right)\) nên nhận \(\overrightarrow n  = \left( {1;-2} \right)\) làm VTPT

Mà \(\Delta\) đi qua điểm (-3;-5) nên có phương trình:

\(\Delta :\)\(1\left( {x + 3} \right) - 2\left( {y + 5} \right) = 0 \) \(\Leftrightarrow x - 2y - 7 = 0\)

Phương trình đường thẳng \(\Delta '\) song song với \(\Delta \) có dạng: \(x - 2y + c = 0,c \ne  - 7\)

Theo giả thiết

\(d\left( {A;\Delta '} \right) = 3\sqrt 5  \)

\(\Leftrightarrow \dfrac{{\left| {1 - 2 + c} \right|}}{{\sqrt 5 }} = 3\sqrt 5 \)

\(\Leftrightarrow \left| {c - 1} \right| = 5\)

\( \Leftrightarrow \left[ \matrix{  c - 1 = 15 \hfill \cr  c - 1 =  - 15 \hfill \cr}  \right. \Leftrightarrow \left[ \matrix{  c = 16 \hfill \cr  c =  - 14 \hfill \cr}  \right.\)

Vậy có hai đường thẳng

\(\Delta ':x - 2y + 16 = 0 \)

\(\Delta '':x - 2y - 14 = 0 \).

 Loigiaihay.com


Bình chọn:
3.6 trên 5 phiếu

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!