Cho hai điểm \(A\left( {{x_A};{y_A};{z_A}} \right)\), \(B\left( {{x_B};{y_B};{z_B}} \right)\). Độ dài vecto \(\overrightarrow {AB} \) hay khoảng cách từ A đến B là: \(\left| {\overrightarrow {AB} } \right| = AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \).
1) Trong không gian Oxyz, cho hai điểm A(2;1;3), B(1;-1;5). Tính độ dài đoạn thẳng AB.
Giải:
\(AB = \sqrt {{{({x_B} - {x_A})}^2} + {{({y_B} - {y_A})}^2} + {{({z_B} - {z_A})}^2}} = \sqrt {{{(1 - 2)}^2} + {{( - 1 - 1)}^2} + {{(5 - 3)}^2}} = 3\).
2) Trong không gian Oxy, cho điểm A(-5;2;3) và B là điểm đối xứng với A qua trục Oy. Tính độ dài đoạn thẳng AB.
Giải:
B đối xứng với A qua Oy nên B(5;2;-3).
\(AB = \sqrt {{{(5 + 5)}^2} + {{(2 - 2)}^2} + {{( - 3 - 3)}^2}}= 2\sqrt {34} \).