Từ điển Toán 12 | Các dạng bài tập Toán 12 Giá trị lớn nhất và giá trị nhỏ nhất của hàm số - Từ đi..

Cách tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số dựa vào công thức hàm số - Toán 12

Cách tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số dựa vào công thức hàm số

1. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số là gì?

Cho hàm số \(y = f(x)\) xác định trên tập \(D\).

- Số \(M\) là giá trị lớn nhất (GTLN) của hàm số \(f\) trên \(D \).

\(⇔\left\{ \matrix{
f(x) \le M,\forall x \in D \hfill \cr
\exists \, {x_0} \in D\text{ sao cho }f({x_0}) = M \hfill \cr} \right.\)

Kí hiệu: \(M=\underset{D}{\max} f(x)\).

- Số \(m\) là giá trị nhỏ nhất (GTNN) của hàm số \(f\) trên \(D\).

\(⇔\left\{ \matrix{
f(x) \ge m,\forall x \in D \hfill \cr
\exists \, {x_0} \in D\text{ sao cho }f({x_0}) = m \hfill \cr} \right.\)

Kí hiệu: \(m=\underset{D}{\min} f(x)\).

2. Cách tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số dựa vào công thức hàm số

Cho hàm số y = f(x).

Bước 1: Tìm tập xác định.

Bước 2: Tính đạo f’(x). Tìm các giá trị \({x_1},{x_2},...,{x_n} \in [a;b]\) sao cho f’(x) = 0 hoặc f’(x) không tồn tại.

Bước 3: Tính \(f\left( a \right),f\left( {{x_1}} \right),f\left( {{x_2}} \right),...,f\left( {{x_n}} \right),f\left( b \right)\). Giá trị lớn nhất trong các giá trị vừa tìm là \(\mathop {\max }\limits_{[a;b]} f(x)\), giá trị nhỏ nhất trong các giá trị vừa tìm là \(\mathop {\min }\limits_{[a;b]} f(x)\).

Lưu ý: Nếu đề bài yêu cầu tìm GTLN, GTNN trên khoảng chứa \( \pm \infty \), ta cầm tìm \(\mathop {\lim }\limits_{x \to  \pm \infty } f(x)\) và so sánh.

Ví dụ minh hoạ:

Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:

a) \(y = {x^3} - 8{x^2} - 12x + 1\) trên đoạn \(\left[ { - 2;9} \right]\);

b) \(y =  - 2{x^3} + 9{x^2} - 17\) trên nửa khoảng \(\left( { - \infty ;4} \right]\);

c) \(y = {x^3} - 12x + 4\) trên đoạn \(\left[ { - 6;3} \right]\);

d) \(y = 2{x^3} - {x^2} - 28x - 3\) trên đoạn \(\left[ { - 2;1} \right]\);

e) \(y =  - 3{x^3} + 4{x^2} - 5x - 17\) trên đoạn \(\left[ { - 1;2} \right]\).

Giải:

a) Xét hàm số \(y = f\left( x \right) = {x^3} - 8{x^2} - 12x + 1\) trên đoạn \(\left[ { - 2;9} \right]\).

Ta có: \(f'\left( x \right) = 3{{\rm{x}}^2} - 16{\rm{x}} - 12\)

\(f'\left( x \right) = 0 \Leftrightarrow x = 6\) hoặc \(x =  - \frac{2}{3}\).

\(f\left( { - 2} \right) =  - 15;f\left( { - \frac{2}{3}} \right) = \frac{{139}}{{27}};f\left( 6 \right) =  - 143;f\left( 9 \right) =  - 26\).

Vậy \(\mathop {\max }\limits_{\left[ { - 2;9} \right]} f\left( x \right) = f\left( { - \frac{2}{3}} \right) = \frac{{139}}{{27}},\mathop {\min }\limits_{\left[ { - 2;9} \right]} f\left( x \right) = f\left( 6 \right) = {\rm{\;}} - 143\).

b) Xét hàm số \(y = f\left( x \right) =  - 2{x^3} + 9{x^2} - 17\) trên nửa khoảng \(\left( { - \infty ;4} \right]\).

Ta có: \(f'\left( x \right) =  - 6{{\rm{x}}^2} + 18{\rm{x}}\).

\(f'\left( x \right) = 0 \Leftrightarrow x = 0\) hoặc \(x = 3\).

Bảng biến thiên của hàm số trên nửa khoảng \(\left( { - \infty ;4} \right]\):

Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_{\left( { - \infty ;4} \right]} f\left( x \right) = f\left( 0 \right) =  - 17\), hàm số không có giá trị lớn nhất trên nửa khoảng \(\left( { - \infty ;4} \right]\).

c) Xét hàm số \(y = f\left( x \right) = {x^3} - 12x + 4\) trên đoạn \(\left[ { - 6;3} \right]\).

Ta có: \(f'\left( x \right) = 3{{\rm{x}}^2} - 12\).

\(f'\left( x \right) = 0 \Leftrightarrow x = 2\) hoặc \(x =  - 2\).

\(f\left( { - 6} \right) = {\rm{\;}} - 140;f\left( { - 2} \right) = 20;f\left( 2 \right) =  - 12;f\left( 3 \right) =  - 5\).

Vậy \(\mathop {\max }\limits_{\left[ { - 6;3} \right]} f\left( x \right) = f\left( { - 2} \right) = 20,\mathop {\min }\limits_{\left[ { - 6;3} \right]} f\left( x \right) = f\left( { - 6} \right) =  - 140\).

d) Xét hàm số \(y = 2{x^3} - {x^2} - 28x - 3\) trên đoạn \(\left[ { - 2;1} \right]\).

Ta có: \(f'\left( x \right) = 6{{\rm{x}}^2} - 2{\rm{x}} - 28\).

\(f'\left( x \right) = 0 \Leftrightarrow x = \frac{7}{3}\) (loại) hoặc \(x =  - 2\).

\(f\left( { - 2} \right) = 33;f\left( 1 \right) =  - 30\).

Vậy \(\mathop {\max }\limits_{\left[ { - 2;1} \right]} f\left( x \right) = f\left( { - 2} \right) = 33,\mathop {\min }\limits_{\left[ { - 2;1} \right]} f\left( x \right) = f\left( 1 \right) = {\rm{\;}} - 30\).

e) Xét hàm số \(y = f\left( x \right) =  - 3{x^3} + 4{x^2} - 5x - 17\) trên đoạn \(\left[ { - 1;2} \right]\).

Ta có: \(f'\left( x \right) =  - 9{{\rm{x}}^2} + 8{\rm{x}} - 5 =  - 9{\left( {x - \frac{4}{9}} \right)^2} - \frac{{29}}{9} < 0,\forall x \in \left[ { - 1;2} \right]\).

\(f\left( { - 1} \right) =  - 5;f\left( 2 \right) =  - 35\).

Vậy \(\mathop {\max }\limits_{\left[ { - 1;2} \right]} f\left( x \right) = f\left( { - 1} \right) = - 5,\mathop {\min }\limits_{\left[ { - 1;2} \right]} f\left( x \right) = f\left( 2 \right) = - 35\).

3. Bài tập vận dụng

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí