Đề bài

Giá trị của biểu thức \(A = \sqrt {810.40}  + \sqrt {24} .\sqrt {12} .\sqrt {0,5} \) là:

  • A.
    \(A = 192\)     
  • B.
    \(A = 180\)
  • C.
    \(A = 12\)
  • D.
    \(A = 164\)
Phương pháp giải

Áp dụng phép khai phương một tích nhân các căn thức bậc hai:

+ Nếu \(a \ge 0\) và \(b \ge 0\) thì \(\sqrt {a.b}  = \sqrt a .\sqrt b \)

+ Muốn khai phương một tích của các số không âm, ta có thể khai phương từng thừa số rồi nhân các kết quả với nhau.

+ Muốn nhân các căn thức bậc hai của các số không âm, ta có thể nhân các số dưới dấu căn với nhau rồi lấy căn bậc hai của kết quả đó.

Lời giải của GV Loigiaihay.com

\(\begin{array}{l}A = \sqrt {810.40}  + \sqrt {24} .\sqrt {12} .\sqrt {0,5} \\\,\,\,\,\, = \sqrt {81.100.4}  + \sqrt {24.12.0,5} \\\,\,\,\,\, = \sqrt {{9^2}} .\sqrt {{{10}^2}} .\sqrt {{2^2}}  + \sqrt {144} \\\,\,\,\, = 9.10.2 + \sqrt {{{12}^2}} \\\,\,\,\, = 180 + 12\\\,\,\,\, = 192\end{array}\)

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Cho $a,b$ là hai số không âm. Khẳng định nào sau đây là đúng?

Xem lời giải >>
Bài 2 :

a) Tính \(\sqrt 3 .\sqrt {75} \)

b) Rút gọn \(\sqrt {5a{b^3}} .\sqrt {5ab} \) (với \(a < 0,b < 0\)) .

Xem lời giải >>
Bài 3 :

a) Tính nhanh \(\sqrt {25.49} .\)

b) Phân tích thành nhân tử: \(\sqrt {ab}  - 4\sqrt a \) (với \(a \ge 0,b \ge 0\) ) .

Xem lời giải >>
Bài 4 :

Vì \(\sqrt {{{\left( { - 3} \right)}^2}}  =  - 3\) và \(\sqrt {{{\left( { - 12} \right)}^2}}  =  - 12\) nên \(\sqrt {{{\left( { - 3} \right)}^2}.{{\left( { - 12} \right)}^2}}  = \left( { - 3} \right).\left( { - 12} \right) = 36.\)

Theo em, cách làm của Vuông có đúng không? Vì sao?

Xem lời giải >>
Bài 5 :

Rút gọn biểu thức \(\sqrt {2\left( {{a^2} - {b^2}} \right)} .\sqrt {\frac{3}{{a + b}}} \) (với \(a \ge b > 0\)) .

Xem lời giải >>
Bài 6 :

Rút gọn \(\frac{{ - 3\sqrt {16a}  + 5a\sqrt {16a{b^2}} }}{{2\sqrt a }}\) (với \(a > 0,b > 0).\)

Xem lời giải >>
Bài 7 :

Rút gọn các biểu thức sau:

a) \(\sqrt {500} \)

b) \(\sqrt {5a} .\sqrt {20a} \) với a \( \ge \)0

c) \(\sqrt {18.{{\left( {2 - a} \right)}^2}} \) với a > 2

Xem lời giải >>
Bài 8 :

Đưa thừa số vào trong dấu căn bậc hai:

a) \(5\sqrt 2 \)

b) \( - 10\sqrt 7 \)

c) \(2a\sqrt {\frac{3}{{10a}}} \) với a > 0

Xem lời giải >>
Bài 9 :

Rút gọn các biểu thức sau:

a) \(\sqrt {{8^2}.5} \)

b) \(\sqrt {81{a^2}} \) với a < 0

c) \(\sqrt {5a} .\sqrt {45a}  - 3a\) với a \( \ge \) 0

Xem lời giải >>
Bài 10 :

So sánh:

a. \(\sqrt {16.0,25} \) và \(\sqrt {16} .\sqrt {0,25} \);

b. \(\sqrt {a.b} \) và \(\sqrt a .\sqrt b \) với a, b là hai số không âm.

Xem lời giải >>
Bài 11 :

Áp dụng quy tắc về căn thức bậc hai của một tích, hãy rút gọn biểu thức:

a. \(\sqrt {9x_{}^4} \);

b. \(\sqrt {3a_{}^3} .\sqrt {27a} \) với \(a > 0\).

Xem lời giải >>
Bài 12 :

Áp dụng quy tắc về căn thức bậc hai của một tích, hãy rút gọn biểu thức:

a. \(\sqrt {25\left( {a + 1} \right)_{}^2} \) với \(a >  - 1\);

b. \(\sqrt {x_{}^2\left( {x - 5} \right)_{}^2} \) với \(x > 5\);

c. \(\sqrt {2b} .\sqrt {32b} \) với \(b > 0\);

d. \(\sqrt {3c} .\sqrt {27c_{}^3} \) với \(c > 0\).

Xem lời giải >>
Bài 13 :

Rút gọn các biểu thức sau:

a) \(\sqrt {36{x^8}{{\left( {2 - y} \right)}^2}} \) với \(y \ge 2\);

b) \(\sqrt {\frac{{7z}}{3}} .\sqrt {\frac{3}{{28z}}} \) với \(z > 0\).

Xem lời giải >>
Bài 14 :

Một hình chữ nhật có chiều dài là \(\sqrt {\frac{a}{3}} \) mét và chiều rộng là \(\sqrt {\frac{a}{{12}}} \) (mét) \(\left( {a > 0} \right)\). Tính diện tích của hình chữ nhật theo a.

Xem lời giải >>
Bài 15 :

Xét phát biểu I: “Nếu a và b là hai số không âm bất kì thì \(\sqrt {a.b}  = \sqrt a .\sqrt b \)” và phát biểu II: “Nếu a và b là hai số không âm bất kì thì \(\sqrt {a + b}  = \sqrt a  + \sqrt b \)”

Trong các khẳng định sau, khẳng định nào là đúng?

A. Cả hai phát biểu I và II đều đúng.

B. Cả hai phát biểu I và II đều sai.

C. Phát biểu I đúng và phát biểu II sai.

D. Phát biểu I sai và phát biểu II đúng.

Xem lời giải >>
Bài 16 :

Khẳng định nào sau đây là đúng?

Xem lời giải >>
Bài 17 :

Rút gọn biểu thức  $\sqrt {{a^4}.{{\left( {2a - 1} \right)}^2}} $ với $a \ge \dfrac{1}{2}$ ta được

Xem lời giải >>
Bài 18 :

Rút gọn biểu thức  \(\sqrt {9{{\left( { - a} \right)}^2}.{{\left( {3 - 4a} \right)}^6}} \) với \(a \ge \dfrac{3}{4}\) ta được:

Xem lời giải >>
Bài 19 :

Rút gọn biểu thức  $\sqrt {{a^2}.{{\left( {2a - 3} \right)}^2}} $ với $ 0 \le a < \dfrac{3}{2}$ ta được

Xem lời giải >>
Bài 20 :

Rút gọn biểu thức \(\sqrt {{a^4}.{{\left( {2a - 1} \right)}^2}} \) với \(0 \le a < \dfrac{1}{2}\) ta được:

Xem lời giải >>
Bài 21 :

Rút gọn biểu thức  $\sqrt {0,9.0,1.{{\left( {3 - x} \right)}^2}} $ với $x > 3$ ta được

Xem lời giải >>
Bài 22 :

Rút gọn \(\sqrt {27.48.{{(1 - a)}^2}} \) với \(a > 1\)

Xem lời giải >>
Bài 23 :

Giá trị biểu thức  $\sqrt {x - 2} .\sqrt {x + 2} $ khi $x = \sqrt {29} $ là

Xem lời giải >>
Bài 24 :

Giá trị biểu thức \(\sqrt {5x + 3} .\sqrt {5x - 3} \) khi \(x = \sqrt {3,6} \) là:

Xem lời giải >>
Bài 25 :

Tính giá trị của biểu thức \(A = \dfrac{{2\sqrt x }}{{\sqrt 5  + \sqrt 3 }}\) với \(x = 4 + \sqrt {15} \)

Xem lời giải >>
Bài 26 :

Rút gọn biểu thức  $\dfrac{{\sqrt {{x^3} + 2{x^2}} }}{{\sqrt {x + 2} }}$ với $x > 0$ ta được

Xem lời giải >>
Bài 27 :

Rút gọn biểu thức  \(\dfrac{{\sqrt {9{x^5} + 33{x^4}} }}{{\sqrt {3x + 11} }}\) với \(x > 0\) ta được:

Xem lời giải >>
Bài 28 :

Rút gọn \(A = \dfrac{{\sqrt {25 + x - 10\sqrt x } }}{{\sqrt {25 + x + 10\sqrt x } }}\)với \(x \ge 25\)

Xem lời giải >>
Bài 29 :

Với $x > 5$, cho biểu thức  $A = \dfrac{{\sqrt {{x^2} - 5x} }}{{\sqrt {x - 5} }}$ và $B = x$.

Có bao nhiêu giá trị của $x$ để $A = B$.

Xem lời giải >>
Bài 30 :

Với \(x > 0\) cho biểu thức  \(A = \dfrac{{\sqrt {{x^2} + 6x} }}{{\sqrt {x + 6} }}\)  và \(B = 2x\). Có bao nhiêu giá trị của \(x\) để \(A = B\).

Xem lời giải >>