Rút gọn các biểu thức sau:
a) \(\sqrt {500} \)
b) \(\sqrt {5a} .\sqrt {20a} \) với a \( \ge \)0
c) \(\sqrt {18.{{\left( {2 - a} \right)}^2}} \) với a > 2
Dựa vào tính chất \(\sqrt {a.b} = \sqrt a .\sqrt b \) với a, b > 0
a) \(\sqrt {500} = \sqrt {5.100} = \sqrt 5 .\sqrt {100} = 10\sqrt 5 \)
b) \(\sqrt {5a} .\sqrt {20a} = \sqrt {5a.20a} = \sqrt {100{a^2}} = \sqrt {100} .\sqrt {{a^2}} = 10a\)
c) \(\sqrt {18.{{\left( {2 - a} \right)}^2}} = \sqrt {9.2.{{\left( {2 - a} \right)}^2}} \)\( = \sqrt 9 .\sqrt 2 .\sqrt {{{\left( {2 - a} \right)}^2}} \)\( = 3\sqrt 2 .\left| {2 - a} \right| = 3\sqrt 2 (a - 2)\)
Các bài tập cùng chuyên đề
Cho $a,b$ là hai số không âm. Khẳng định nào sau đây là đúng?
a) Tính \(\sqrt 3 .\sqrt {75} \)
b) Rút gọn \(\sqrt {5a{b^3}} .\sqrt {5ab} \) (với \(a < 0,b < 0\)) .
a) Tính nhanh \(\sqrt {25.49} .\)
b) Phân tích thành nhân tử: \(\sqrt {ab} - 4\sqrt a \) (với \(a \ge 0,b \ge 0\) ) .
Vì \(\sqrt {{{\left( { - 3} \right)}^2}} = - 3\) và \(\sqrt {{{\left( { - 12} \right)}^2}} = - 12\) nên \(\sqrt {{{\left( { - 3} \right)}^2}.{{\left( { - 12} \right)}^2}} = \left( { - 3} \right).\left( { - 12} \right) = 36.\)
Theo em, cách làm của Vuông có đúng không? Vì sao?
Rút gọn biểu thức \(\sqrt {2\left( {{a^2} - {b^2}} \right)} .\sqrt {\frac{3}{{a + b}}} \) (với \(a \ge b > 0\)) .
Rút gọn \(\frac{{ - 3\sqrt {16a} + 5a\sqrt {16a{b^2}} }}{{2\sqrt a }}\) (với \(a > 0,b > 0).\)
Đưa thừa số vào trong dấu căn bậc hai:
a) \(5\sqrt 2 \)
b) \( - 10\sqrt 7 \)
c) \(2a\sqrt {\frac{3}{{10a}}} \) với a > 0
Rút gọn các biểu thức sau:
a) \(\sqrt {{8^2}.5} \)
b) \(\sqrt {81{a^2}} \) với a < 0
c) \(\sqrt {5a} .\sqrt {45a} - 3a\) với a \( \ge \) 0
So sánh:
a. \(\sqrt {16.0,25} \) và \(\sqrt {16} .\sqrt {0,25} \);
b. \(\sqrt {a.b} \) và \(\sqrt a .\sqrt b \) với a, b là hai số không âm.
Áp dụng quy tắc về căn thức bậc hai của một tích, hãy rút gọn biểu thức:
a. \(\sqrt {9x_{}^4} \);
b. \(\sqrt {3a_{}^3} .\sqrt {27a} \) với \(a > 0\).
Áp dụng quy tắc về căn thức bậc hai của một tích, hãy rút gọn biểu thức:
a. \(\sqrt {25\left( {a + 1} \right)_{}^2} \) với \(a > - 1\);
b. \(\sqrt {x_{}^2\left( {x - 5} \right)_{}^2} \) với \(x > 5\);
c. \(\sqrt {2b} .\sqrt {32b} \) với \(b > 0\);
d. \(\sqrt {3c} .\sqrt {27c_{}^3} \) với \(c > 0\).
Rút gọn các biểu thức sau:
a) \(\sqrt {36{x^8}{{\left( {2 - y} \right)}^2}} \) với \(y \ge 2\);
b) \(\sqrt {\frac{{7z}}{3}} .\sqrt {\frac{3}{{28z}}} \) với \(z > 0\).
Một hình chữ nhật có chiều dài là \(\sqrt {\frac{a}{3}} \) mét và chiều rộng là \(\sqrt {\frac{a}{{12}}} \) (mét) \(\left( {a > 0} \right)\). Tính diện tích của hình chữ nhật theo a.
Xét phát biểu I: “Nếu a và b là hai số không âm bất kì thì \(\sqrt {a.b} = \sqrt a .\sqrt b \)” và phát biểu II: “Nếu a và b là hai số không âm bất kì thì \(\sqrt {a + b} = \sqrt a + \sqrt b \)”
Trong các khẳng định sau, khẳng định nào là đúng?
A. Cả hai phát biểu I và II đều đúng.
B. Cả hai phát biểu I và II đều sai.
C. Phát biểu I đúng và phát biểu II sai.
D. Phát biểu I sai và phát biểu II đúng.
Khẳng định nào sau đây là đúng?
Rút gọn biểu thức $\sqrt {{a^4}.{{\left( {2a - 1} \right)}^2}} $ với $a \ge \dfrac{1}{2}$ ta được
Rút gọn biểu thức \(\sqrt {9{{\left( { - a} \right)}^2}.{{\left( {3 - 4a} \right)}^6}} \) với \(a \ge \dfrac{3}{4}\) ta được:
Rút gọn biểu thức $\sqrt {{a^2}.{{\left( {2a - 3} \right)}^2}} $ với $ 0 \le a < \dfrac{3}{2}$ ta được
Rút gọn biểu thức \(\sqrt {{a^4}.{{\left( {2a - 1} \right)}^2}} \) với \(0 \le a < \dfrac{1}{2}\) ta được:
Rút gọn biểu thức $\sqrt {0,9.0,1.{{\left( {3 - x} \right)}^2}} $ với $x > 3$ ta được
Rút gọn \(\sqrt {27.48.{{(1 - a)}^2}} \) với \(a > 1\)
Giá trị biểu thức $\sqrt {x - 2} .\sqrt {x + 2} $ khi $x = \sqrt {29} $ là
Giá trị biểu thức \(\sqrt {5x + 3} .\sqrt {5x - 3} \) khi \(x = \sqrt {3,6} \) là:
Tính giá trị của biểu thức \(A = \dfrac{{2\sqrt x }}{{\sqrt 5 + \sqrt 3 }}\) với \(x = 4 + \sqrt {15} \)
Rút gọn biểu thức $\dfrac{{\sqrt {{x^3} + 2{x^2}} }}{{\sqrt {x + 2} }}$ với $x > 0$ ta được
Rút gọn biểu thức \(\dfrac{{\sqrt {9{x^5} + 33{x^4}} }}{{\sqrt {3x + 11} }}\) với \(x > 0\) ta được:
Rút gọn \(A = \dfrac{{\sqrt {25 + x - 10\sqrt x } }}{{\sqrt {25 + x + 10\sqrt x } }}\)với \(x \ge 25\)
Với $x > 5$, cho biểu thức $A = \dfrac{{\sqrt {{x^2} - 5x} }}{{\sqrt {x - 5} }}$ và $B = x$.
Có bao nhiêu giá trị của $x$ để $A = B$.
Với \(x > 0\) cho biểu thức \(A = \dfrac{{\sqrt {{x^2} + 6x} }}{{\sqrt {x + 6} }}\) và \(B = 2x\). Có bao nhiêu giá trị của \(x\) để \(A = B\).
Với $x,y \ge 0;x \ne y$, rút gọn biểu thức $A = \dfrac{{x - \sqrt {xy} }}{{x - y}}$ ta được