Đề bài

Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25$  và mặt phẳng $\left( \alpha  \right):2x+y-2z+m=~0$. Tìm các giá trị của $m$ để \(\left( \alpha  \right)\) và $\left( S \right)$ không có điểm chung.

  • A.

    $m <  - 9$ hoặc $m > 21$ .

  • B.

    $ - 9 < m < 21$.

  • C.

    $ - 9 \le m \le 21$

  • D.

    $m \le  - 9$ hoặc $m \ge 21$.

Phương pháp giải

Để xét vị trí tương đối giữa mặt phẳng với mặt cầu ta so sánh khoảng cách từ tâm mặt cầu đến mặt phẳng với bán kính mặt cầu.

Để mặt cầu với mặt phẳng không có điểm chung thì khoảng cách từ tâm mặt cầu đến mặt phẳng lớn hơn bán kính mặt cầu

Lời giải của GV Loigiaihay.com

Mặt cầu $\left( S \right)$  có tâm $I\left( { - 1;2;3} \right)$ bán kính $R = 5$.

Để mặt cầu với mặt phẳng không có điểm chung thì khoảng cách từ tâm mặt cầu đến mặt phẳng lớn hơn bán kính mặt cầu.

Ta có

$\begin{array}{l}d\left( {I,\left( \alpha  \right)} \right) > 5 \Leftrightarrow \dfrac{{\left| {2.\left( { - 1} \right) + 2 - 2.3 + m} \right|}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 2} \right)}^2}} }} > 5\\ \Leftrightarrow \left| {m - 6} \right| > 15 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m - 6 > 15}\\{m - 6 <  - 15}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m > 21}\\{m <  - 9}\end{array}} \right.\end{array}$

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $(S)$ có tâm $I(2;1;-1)$ và tiếp xúc với mặt phẳng \((\alpha )\)  có phương trình \(2x - 2y - z + 3 = 0\). Bán kính của $(S)$ là:

Xem lời giải >>
Bài 2 :

Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $(S)$ có tâm $I(3;2;-1)$ và đi qua điểm $A(2;1;2)$. Mặt phẳng nào dưới đây tiếp xúc với $(S)$ tại $A$?

Xem lời giải >>
Bài 3 :

Trong không gian với hệ tọa độ $Oxyz$ cho mặt cầu $(S):{(x - 1)^2} + {(y + 1)^2} + {(z + 2)^2} = 4$ và 2 đường thẳng ${\Delta _1}:\left\{ \begin{array}{l}x = 2t\\y = 1 - t\\z = t\end{array} \right.$ và ${\Delta _2}:\dfrac{{x - 1}}{{ - 1}} = \dfrac{y}{1} = \dfrac{z}{{ - 1}}$. Một phương trình mặt phẳng $(P)$ song song với ${\Delta _1},{\Delta _2}$ và tiếp xúc với mặt cầu $(S)$ là:

Xem lời giải >>
Bài 4 :

Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm $A\left( {0; - 1;0} \right),B\left( {1;1; - 1} \right)$ và mặt cầu $(S):{x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 3 = 0$. Mặt phẳng $(P)$ đi qua $A, B$ và cắt mặt cầu $(S)$ theo giao tuyến là đường tròn có bán kính lớn nhất có phương trình là:

Xem lời giải >>
Bài 5 :

Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $(S)$ đi qua điểm \(A(2; - 2;5)\) và tiếp xúc với các mặt phẳng \(\left( \alpha  \right):x = 1,\left( \beta  \right):y =  - 1,\left( \gamma  \right):z = 1\). Bán kính của mặt cầu $(S)$ bằng: 

Xem lời giải >>
Bài 6 :

Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $(S):{(x - 2)^2} + {(y + 1)^2} + {(z - 4)^2} = 10$ và mặt phẳng $(P): - 2x + y + \sqrt 5 z + 9 = 0$ . Gọi $(Q)$ là tiếp diện của $(S)$ tại $M(5;0;4)$ . Tính góc giữa $(P)$ và $(Q)$.

Xem lời giải >>
Bài 7 :

Trong không gian với hệ tọa độ $Oxyz $, cho mặt cầu \((S) : {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^3} = 9\) và mặt phẳng  \((P) :2x - 2y + z + 3 = 0\). Gọi $M(a ; b ; c)$ là điểm trên mặt cầu $(S)$ sao cho khoảng cách từ $M$ đến mặt phẳng $(P)$ là lớn nhất. Khi đó:

Xem lời giải >>
Bài 8 :

Trong không gian $Oxyz $, xác định tọa độ tâm $I$ của đường tròn giao tuyến của mặt cầu  \((S) :{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 64\)  với mặt phẳng\(\left( \alpha  \right):2x + 2y + z + 10 = 0.\)  

Xem lời giải >>
Bài 9 :

Cho điểm $A(0 ; 8 ; 2)$ và mặt cầu $(S)$ có phương trình \((S):{\left( {x - 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 7} \right)^2} = 72\) và điểm $B(1 ; 1 ; -9)$. Viết phương trình mặt phẳng $(P)$ qua $A$ tiếp xúc với $(S)$ sao cho khoảng cách từ $B$ đến $(P)$ là lớn nhất. Giả sử \(\overrightarrow n  = \left( {1;m;n} \right)\) là véctơ pháp tuyến của $(P)$. Lúc đó:

Xem lời giải >>
Bài 10 :

Mặt phẳng $\left( {Oyz} \right)$ cắt mặt cầu $\left( S \right):{x^2} + {y^2} + {z^2} + 2x - 2y + 4z - 3 = 0$ theo một đường tròn có tọa độ tâm là

Xem lời giải >>
Bài 11 :

Viết  phương trình mặt cầu có tâm $I\left( { - 1;2;3} \right)$ và tiếp xúc với mặt phẳng $\left( P \right):2x - y - 2z + 1 = 0$

Xem lời giải >>
Bài 12 :

Trong không gian với hệ tọa độ $Oxyz$, xét mặt cầu $\left( S \right)$ đi qua hai điểm $A\left( {1;2;1} \right);B\left( {3;2;3} \right)$, có tâm thuộc mặt phẳng $\left( P \right):x - y - 3 = 0$ , đồng thời có bán kính nhỏ nhất, hãy tính bán kính $R$ của mặt cầu $\left( S \right)$?

Xem lời giải >>
Bài 13 :

Trong không gian với hệ tọa độ \(Oxyz,\left( \alpha  \right)\) cắt mặt cầu $\left( S \right)$ tâm \(I\left( {1; - 3;3} \right)\) theo giao tuyến là đường tròn tâm \(H\left( {2;0;1} \right)\) , bán kính $r = 2$ . Phương trình (S) là:

Xem lời giải >>
Bài 14 :

Trong không gian với hệ tọa độ $Oxyz$ , phương trình nào dưới đây là phương trình mặt cầu tâm \(I\left( { - 3;2; - 4} \right)\) và tiếp xúc với mặt phẳng \(\left( {Oxz} \right)\)?

Xem lời giải >>
Bài 15 :

Mặt cầu $\left( S \right)$ có tâm \(I( - 1;2; - 5)\) cắt mặt phẳng \(\left( P \right):2x - 2y - z + 10 = 0\) theo thiết diện là hình tròn có diện tích \(3\pi \). Phương trình của $\left( S \right)$ là:

Xem lời giải >>
Bài 16 :

Trong không gian vớ hệ tọa độ $Oxyz$, cho mặt cầu $(S)$ có tâm $I(3;2; - 1)$ và đi qua điểm $A(2;1;2)$. Mặt phẳng nào dưới đây tiếp xúc với $(S)$ tại $A$?

Xem lời giải >>
Bài 17 :

Trong không gian với hệ tọa độ \(Oxyz\) cho mặt phẳng \(\left( P \right):x - 2y + 2z - 3 = 0\) và mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} + 2x - 4y - 2z + 5 = 0\). Giả sử \(M \in \left( P \right)\) và \(N \in \left( S \right)\)  sao cho \(\overrightarrow {MN} \) cùng phương với vectơ \(\overrightarrow u  = \left( {1;0;1} \right)\) và khoảng cách \(MN\) lớn nhất. Tính \(MN\) 

Xem lời giải >>
Bài 18 :

Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $\left( S \right):{x^2} + {y^2} + {z^2} + 2x - 4y + 6z + 5 = 0$. Tiếp diện của $(S)$ tại điểm $M(-1;2;0)$ có phương trình là:

Xem lời giải >>
Bài 19 :

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} + 6x - 4z + 9 - {m^2} = 0\). Gọi T là tập các giá trị của \(m\) để mặt cầu \(\left( S \right)\) tiếp xúc với mặt phẳng \(\left( {Oyz} \right)\). Tích các giá trị của \(m\) trong \(T\) bằng:

Xem lời giải >>
Bài 20 :

Trong không gian \(Oxyz\), cho đường thẳng \(\Delta :\,\,\dfrac{{x - 1}}{{ - 2}} = \dfrac{y}{2} = \dfrac{{z - 2}}{1}\) và mặt phẳng \(\left( P \right):\,\,2x - y + z - 3 = 0\). Gọi \(\left( S \right)\) là mặt cầu có tâm \(I\) thuộc \(\Delta \) và tiếp xúc với \(\left( P \right)\) tại điểm \(H\left( {1; - 1;0} \right)\). Phương trình của \(\left( S \right)\) là:

Xem lời giải >>