Trong không gian với hệ tọa độ $Oxyz $, cho mặt cầu \((S) : {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^3} = 9\) và mặt phẳng \((P) :2x - 2y + z + 3 = 0\). Gọi $M(a ; b ; c)$ là điểm trên mặt cầu $(S)$ sao cho khoảng cách từ $M$ đến mặt phẳng $(P)$ là lớn nhất. Khi đó:
-
A.
\(a + b + c = 5\)
-
B.
\(a + b + c = 6\)
-
C.
\(a + b + c = 7\)
-
D.
\(a + b + c = 8\)
- Viết phương trình đường thẳng đi qua tâm và vuông góc mặt phẳng.
- Tìm giao điểm của đường thẳng với mặt cầu.
- Tính khoảng cách từ hai điểm đó đến mặt phẳng và kết luận.
Giả sử $M(a;b;c)$ là điểm cần tìm.
Mặt cầu $(S)$ có tâm $I(1;2;3)$ bán kính $R=3 $.
Gọi $Δ$ là đường thẳng qua $I$ và vuông góc với $mp(P)$.
\( \Rightarrow \)\(\Delta :\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 - 2t\\z = 3 + t\end{array} \right.\)
Đường thẳng $Δ$ cắt mặt cầu tại 2 điểm $A, B$. Toạ độ $A, B$ là nghiệm của hệ:
\(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 - 2t\\z = 3 + t\\{(x - 1)^2} + {(y - 2)^2} + {(z - 3)^2} = 9\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}A\left( {3;0;4} \right)\\B\left( { - 1;4;2} \right)\;\end{array} \right.\)
Ta có: $d\left( {A;\left( P \right)} \right) = \dfrac{{\left| {2.3 - 2.0 + 4 + 3} \right|}}{{\sqrt {{2^2} + {2^2} + 1} }} = \dfrac{{13}}{3}$ và $d\left( {B;\left( P \right)} \right) = \dfrac{{\left| {2.( - 1) - 2.4 + 2 + 3} \right|}}{{\sqrt {{2^2} + {2^2} + 1} }} = \dfrac{5}{3}$
Do đó điểm cần tìm là điểm $A≡M \Rightarrow a+b+c= 3+0+4= 7$.
Đáp án : C
Các bài tập cùng chuyên đề
Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $(S)$ có tâm $I(2;1;-1)$ và tiếp xúc với mặt phẳng \((\alpha )\) có phương trình \(2x - 2y - z + 3 = 0\). Bán kính của $(S)$ là:
Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $(S)$ có tâm $I(3;2;-1)$ và đi qua điểm $A(2;1;2)$. Mặt phẳng nào dưới đây tiếp xúc với $(S)$ tại $A$?
Trong không gian với hệ tọa độ $Oxyz$ cho mặt cầu $(S):{(x - 1)^2} + {(y + 1)^2} + {(z + 2)^2} = 4$ và 2 đường thẳng ${\Delta _1}:\left\{ \begin{array}{l}x = 2t\\y = 1 - t\\z = t\end{array} \right.$ và ${\Delta _2}:\dfrac{{x - 1}}{{ - 1}} = \dfrac{y}{1} = \dfrac{z}{{ - 1}}$. Một phương trình mặt phẳng $(P)$ song song với ${\Delta _1},{\Delta _2}$ và tiếp xúc với mặt cầu $(S)$ là:
Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm $A\left( {0; - 1;0} \right),B\left( {1;1; - 1} \right)$ và mặt cầu $(S):{x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 3 = 0$. Mặt phẳng $(P)$ đi qua $A, B$ và cắt mặt cầu $(S)$ theo giao tuyến là đường tròn có bán kính lớn nhất có phương trình là:
Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $(S)$ đi qua điểm \(A(2; - 2;5)\) và tiếp xúc với các mặt phẳng \(\left( \alpha \right):x = 1,\left( \beta \right):y = - 1,\left( \gamma \right):z = 1\). Bán kính của mặt cầu $(S)$ bằng:
Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $(S):{(x - 2)^2} + {(y + 1)^2} + {(z - 4)^2} = 10$ và mặt phẳng $(P): - 2x + y + \sqrt 5 z + 9 = 0$ . Gọi $(Q)$ là tiếp diện của $(S)$ tại $M(5;0;4)$ . Tính góc giữa $(P)$ và $(Q)$.
Trong không gian $Oxyz $, xác định tọa độ tâm $I$ của đường tròn giao tuyến của mặt cầu \((S) :{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 64\) với mặt phẳng\(\left( \alpha \right):2x + 2y + z + 10 = 0.\)
Cho điểm $A(0 ; 8 ; 2)$ và mặt cầu $(S)$ có phương trình \((S):{\left( {x - 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 7} \right)^2} = 72\) và điểm $B(1 ; 1 ; -9)$. Viết phương trình mặt phẳng $(P)$ qua $A$ tiếp xúc với $(S)$ sao cho khoảng cách từ $B$ đến $(P)$ là lớn nhất. Giả sử \(\overrightarrow n = \left( {1;m;n} \right)\) là véctơ pháp tuyến của $(P)$. Lúc đó:
Mặt phẳng $\left( {Oyz} \right)$ cắt mặt cầu $\left( S \right):{x^2} + {y^2} + {z^2} + 2x - 2y + 4z - 3 = 0$ theo một đường tròn có tọa độ tâm là
Viết phương trình mặt cầu có tâm $I\left( { - 1;2;3} \right)$ và tiếp xúc với mặt phẳng $\left( P \right):2x - y - 2z + 1 = 0$
Trong không gian với hệ tọa độ $Oxyz$, xét mặt cầu $\left( S \right)$ đi qua hai điểm $A\left( {1;2;1} \right);B\left( {3;2;3} \right)$, có tâm thuộc mặt phẳng $\left( P \right):x - y - 3 = 0$ , đồng thời có bán kính nhỏ nhất, hãy tính bán kính $R$ của mặt cầu $\left( S \right)$?
Trong không gian với hệ tọa độ \(Oxyz,\left( \alpha \right)\) cắt mặt cầu $\left( S \right)$ tâm \(I\left( {1; - 3;3} \right)\) theo giao tuyến là đường tròn tâm \(H\left( {2;0;1} \right)\) , bán kính $r = 2$ . Phương trình (S) là:
Trong không gian với hệ tọa độ $Oxyz$ , phương trình nào dưới đây là phương trình mặt cầu tâm \(I\left( { - 3;2; - 4} \right)\) và tiếp xúc với mặt phẳng \(\left( {Oxz} \right)\)?
Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25$ và mặt phẳng $\left( \alpha \right):2x+y-2z+m=~0$. Tìm các giá trị của $m$ để \(\left( \alpha \right)\) và $\left( S \right)$ không có điểm chung.
Mặt cầu $\left( S \right)$ có tâm \(I( - 1;2; - 5)\) cắt mặt phẳng \(\left( P \right):2x - 2y - z + 10 = 0\) theo thiết diện là hình tròn có diện tích \(3\pi \). Phương trình của $\left( S \right)$ là:
Trong không gian vớ hệ tọa độ $Oxyz$, cho mặt cầu $(S)$ có tâm $I(3;2; - 1)$ và đi qua điểm $A(2;1;2)$. Mặt phẳng nào dưới đây tiếp xúc với $(S)$ tại $A$?
Trong không gian với hệ tọa độ \(Oxyz\) cho mặt phẳng \(\left( P \right):x - 2y + 2z - 3 = 0\) và mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} + 2x - 4y - 2z + 5 = 0\). Giả sử \(M \in \left( P \right)\) và \(N \in \left( S \right)\) sao cho \(\overrightarrow {MN} \) cùng phương với vectơ \(\overrightarrow u = \left( {1;0;1} \right)\) và khoảng cách \(MN\) lớn nhất. Tính \(MN\)
Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $\left( S \right):{x^2} + {y^2} + {z^2} + 2x - 4y + 6z + 5 = 0$. Tiếp diện của $(S)$ tại điểm $M(-1;2;0)$ có phương trình là:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} + 6x - 4z + 9 - {m^2} = 0\). Gọi T là tập các giá trị của \(m\) để mặt cầu \(\left( S \right)\) tiếp xúc với mặt phẳng \(\left( {Oyz} \right)\). Tích các giá trị của \(m\) trong \(T\) bằng:
Trong không gian \(Oxyz\), cho đường thẳng \(\Delta :\,\,\dfrac{{x - 1}}{{ - 2}} = \dfrac{y}{2} = \dfrac{{z - 2}}{1}\) và mặt phẳng \(\left( P \right):\,\,2x - y + z - 3 = 0\). Gọi \(\left( S \right)\) là mặt cầu có tâm \(I\) thuộc \(\Delta \) và tiếp xúc với \(\left( P \right)\) tại điểm \(H\left( {1; - 1;0} \right)\). Phương trình của \(\left( S \right)\) là: