Đề bài

Viết  phương trình mặt cầu có tâm $I\left( { - 1;2;3} \right)$ và tiếp xúc với mặt phẳng $\left( P \right):2x - y - 2z + 1 = 0$

  • A.

    ${\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 2$

  • B.

    ${\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 3$

  • C.

    ${\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 4$

  • D.

    ${\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9$

Phương pháp giải

Tìm khoảng cách từ $I$ đến mặt phẳng $\left( P \right)$, đó chính là bán kính mặt cầu cần tìm

Lời giải của GV Loigiaihay.com

Khoảng cách từ $I$ đến $\left( P \right)$  được tính theo công thức $d\left( {I;\left( P \right)} \right) = \dfrac{{\left| {2.\left( { - 1} \right) - 2 - 2.3 + 1} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = 3$

Phương trình mặt cầu cần tìm là ${\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9$

Đáp án : D

Chú ý

Sau khi tính được $R=3$, nhiều em sẽ chọn nhầm đáp án B vì quên không bình phương $R$.