Cho tam giác \(ABC\) có độ dài các cạnh \(AB\), \(BC\), \(CA\) lần lượt là \(4\,cm\), \(3\,cm\), \(5\,cm\). Trên tia đối của tia \(BA\) lấy điểm \(M\) sao cho \(BM = 2\,cm\), tại \(M\) kẻ đường thẳng vuông góc với \(AB\) cắt \(AC\) tại \(H\). Chọn khẳng định đúng.
Cho tam giác \(ABC\) có độ dài các cạnh \(AB\), \(BC\), \(CA\) lần lượt là \(4\,cm\), \(3\,cm\), \(5\,cm\). Trên tia đối của tia \(BA\) lấy điểm \(M\) sao cho \(BM = 2\,cm\), tại \(M\) kẻ đường thẳng vuông góc với \(AB\) cắt \(AC\) tại \(H\). Chọn khẳng định đúng.
-
A.
\(BC\) vuông góc \(MH\);
-
B.
\(BC\) trùng với \(MH\);
-
C.
\(BC\) song song với \(MH\);
-
D.
Tất cả đều sai.
Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.
Nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông.
Xét tam giác \(ABC\) có \(AB = 4\,cm\), \(BC = 3\,cm\), \(CA = 5\,cm\).
Ta có: \(A{C^2} = A{B^2} + B{C^2}\) (vì \({5^2} = {4^2} + {3^2}\))
Suy ra tam giác \(ABC\) vuông tại A (định lí Pythagore đảo)
Vì \(\left\{ \begin{array}{l}BC \bot AB\\MH \bot AB\end{array} \right.\) suy ra \(BC\parallel MH\) (từ vuông góc đến song song).
Vậy \(BC\) song song với \(MH\).
Đáp án : C
Các bài tập cùng chuyên đề
Cho tam giác ABC có \(AB = 9cm,AC = 12cm,BC = 15cm.\)
a) Chứng minh tam giác ABC vuông tại A.
b) Trên tia đối của tia AB, lấy điểm D sao cho \(AD = 5cm.\) Tính độ dài CD.
Một viên bi lăn theo đoạn đường từ A đến D như hình vẽ \((AB \bot BC,BC \bot CD)\). Hãy tính khoảng cách AD. Biết rằng AB = 10m, BC = 12m, CD = 6m.
Cho hình chữ nhật \(ABCD\), kẻ \(AH \bot BD\) tại \(H\).
a) Chứng minh \(\Delta ADH\) đồng dạng với \(\Delta BDA\).
b) Chứng minh \(\Delta AHD\) đồng dạng với \(\Delta BHA\) và \(A{H^2} = DH.BH\)
c) Tính \(AD, AB\) biết \(DH = 9 cm, BH = 16 cm\).
d) Gọi \(K, M, N\) lần lượt là trung điểm của \(AH, BH, CD\). Chứng minh rằng tứ giác \(MNDK\) là hình bình hành và \(\widehat {AMN} = {90^o}\).
Cho tam giác \(ABC\), đường cao \(AH\). Biết \(AC = 15\,cm\), \(AH = 12\,cm\), \(BH = 9\,cm\). Kết luận nào sau đây là đúng?
Cho tam giác \(ABC\) vuông tại \(A\), có \(AB = 6\, cm\), \(AC = 8\, cm\). \(D\) là một điểm sao cho \(BD = 16\, cm\), \(CD = 24\, cm\). Khẳng định nào sau đây là đúng?
Cho tam giác \(ABH\) vuông tại \(H\) có \(AB = 20\, cm\), \(BH = 12\, cm\). Trên tia đối của tia \(HB\) lấy điểm \(C\) sao cho \(AC = \frac{5}{3}AH\). Chọn đáp án đúng.
Cho tam giác \(ABC\) có \(AB = 6\, cm\), \(AC = 8\, cm\), \(BC = 10\, cm\) và đường cao \(AH\). Tính độ dài \(AH\).