Đề bài

Cho tam giác \(ABH\) vuông tại \(H\) có \(AB = 20\, cm\), \(BH = 12\, cm\). Trên tia đối của tia \(HB\) lấy điểm \(C\) sao cho \(AC = \frac{5}{3}AH\). Chọn đáp án đúng.

  • A.

    \(\widehat {BAC} = {90^o}\);

  • B.

    \(\widehat {BAC} = {120^o}\);

  • C.

    \(\widehat {BAC} = {45^o}\);

  • D.

    \(\widehat {BAC} = {60^o}\).

Phương pháp giải

Vận dụng định lí Pythagore tính độ dài đoạn thẳng \(AH\), từ đó tính độ dài đoạn thẳng \(AC\)

Vận dụng định lí Pythagore tính độ dài đoạn thẳng \(HC\), từ đó tính độ dài đoạn thẳng \(BC\)

Vận dụng định lí Pythagore đảo để kiểm tra tam giác \(ABC\) có vuông không

Lời giải của GV Loigiaihay.com

Xét tam giác \(ABH\) vuông tại \(H\), áp dụng định lí Pythagore ta có:

\(A{B^2} = A{H^2} + B{H^2}\)

Suy ra \(A{H^2} = A{B^2} - B{H^2} = {20^2} - {12^2} = 256\)

Suy ra \(AH = 16\,cm\)

Ta có: \(AC = \frac{5}{3}AH = \frac{5}{3}.16\,cm = \frac{{80}}{3}\,cm\)

Xét tam giác \(ACH\) vuông tại \(H\), áp dụng định lí Pythagore ta có:

\(A{C^2} = A{H^2} + H{C^2}\)

Suy ra \(H{C^2} = A{C^2} - A{H^2} = {\left( {\frac{{80}}{3}} \right)^2} - {16^2} = \frac{{4096}}{9}\)

Suy ra \(HC = \frac{{64}}{3}\,cm\)

Ta có: \(BC = BH + HC = 12\,cm + \frac{{64}}{3}\,cm = \frac{{100}}{3}\,cm\)

Ta có:

\(\begin{array}{l}B{C^2} = {\left( {\frac{{100}}{3}} \right)^2} = \frac{{10\,000}}{9}\\A{C^2} + A{B^2} = {\left( {\frac{{80}}{3}} \right)^2} + {20^2} = \frac{{10\,000}}{9}\end{array}\)

Suy ra \(A{C^2} + A{B^2} = B{C^2}\)

Suy ra \(\Delta ABC\) vuông tại \(A\) (định lý Pythagore đảo)

Suy ra \(\widehat {BAC} = {90^o}\)

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Cho tam giác ABC có \(AB = 9cm,AC = 12cm,BC = 15cm.\)

a)      Chứng minh tam giác ABC vuông tại A.

b)     Trên tia đối của tia AB, lấy điểm D sao cho \(AD = 5cm.\) Tính độ dài CD.

Xem lời giải >>
Bài 2 :

Một viên bi lăn theo đoạn đường từ A đến D như hình vẽ \((AB \bot BC,BC \bot CD)\). Hãy tính khoảng cách AD. Biết rằng AB = 10m, BC = 12m, CD = 6m.

Xem lời giải >>
Bài 3 :

Cho hình chữ nhật \(ABCD\), kẻ \(AH \bot BD\) tại \(H\).

a) Chứng minh \(\Delta ADH\) đồng dạng với \(\Delta BDA\).

b) Chứng minh \(\Delta AHD\) đồng dạng với \(\Delta BHA\) và \(A{H^2} = DH.BH\)

c) Tính \(AD, AB\) biết \(DH = 9 cm, BH = 16 cm\).

d) Gọi \(K, M, N\) lần lượt là trung điểm của \(AH, BH, CD\). Chứng minh rằng tứ giác \(MNDK\) là hình bình hành và \(\widehat {AMN} = {90^o}\).

Xem lời giải >>
Bài 4 :

Cho tam giác \(ABC\), đường cao \(AH\). Biết \(AC = 15\,cm\), \(AH = 12\,cm\), \(BH = 9\,cm\). Kết luận nào sau đây là đúng?

Xem lời giải >>
Bài 5 :

Cho tam giác \(ABC\) vuông tại \(A\), có \(AB = 6\, cm\), \(AC = 8\, cm\). \(D\) là một điểm sao cho \(BD = 16\, cm\), \(CD = 24\, cm\). Khẳng định nào sau đây là đúng?

Xem lời giải >>
Bài 6 :

Cho tam giác \(ABC\) có độ dài các cạnh \(AB\), \(BC\), \(CA\) lần lượt là \(4\,cm\), \(3\,cm\), \(5\,cm\). Trên tia đối của tia \(BA\) lấy điểm \(M\) sao cho \(BM = 2\,cm\), tại \(M\) kẻ đường thẳng vuông góc với \(AB\) cắt \(AC\) tại \(H\). Chọn khẳng định đúng.

Xem lời giải >>
Bài 7 :

Cho tam giác \(ABC\) có \(AB = 6\, cm\), \(AC = 8\, cm\), \(BC = 10\, cm\) và đường cao \(AH\). Tính độ dài \(AH\).

Xem lời giải >>