Phương trình mặt phẳng đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và nhận \(\overrightarrow n = \left( {a;b;c} \right)\) làm VTPT là:
-
A.
\(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0\)
-
B.
\({x_0}\left( {x - a} \right) + {y_0}\left( {y - b} \right) + {z_0}\left( {z - c} \right) = 0\)
-
C.
\(x\left( {a - {x_0}} \right) + y\left( {b - {y_0}} \right) + z\left( {c - {z_0}} \right) = 0\)
-
D.
\(a\left( {x + {x_0}} \right) + b\left( {y + {y_0}} \right) + c\left( {z + {z_0}} \right) = 0\)
Mặt phẳng \(\left( P \right)\) đi qua \(M\left( {{x_0};{y_0};{z_0}} \right)\) và nhận \(\overrightarrow n = \left( {a;b;c} \right)\) làm VTPT thì \(\left( P \right)\) có phương trình:
\(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0\)
Đáp án : A
Các bài tập cùng chuyên đề
Mặt phẳng \(\left( P \right)\) có véc tơ pháp tuyến \(\overrightarrow n \ne \overrightarrow 0 \) thì giá của \(\overrightarrow n \) :
Hai véc tơ không cùng phương \(\overrightarrow a ,\overrightarrow b \) được gọi là cặp véc tơ chỉ phương (VTCP) của \(\left( P \right)\) nếu giá của chúng:
Nếu \(\overrightarrow n \) là một VTPT của \(\left( P \right)\) thì một VTPT khác của \(\left( P \right)\) là:
Nếu hai véc tơ \(\overrightarrow a ,\overrightarrow b \) là cặp véc tơ chỉ phương của mặt phẳng \(\left( P \right)\) thì:
Nếu \(\overrightarrow a ,\overrightarrow b \) là cặp VTCP của \(\left( P \right)\) thì véc tơ nào sau đây có thể là VTPT của \(\left( P \right)\)?
Cho \(\overrightarrow a ,\overrightarrow b \) là các VTCP của mặt phẳng \(\left( P \right)\)
. Chọn kết luận sai?
Cho \(\overrightarrow a = \left( {5;1;3} \right),\overrightarrow b = \left( { - 1; - 3; - 5} \right)\) là cặp VTCP của mặt phẳng \(\left( P \right)\). Véc tơ nào sau đây là một véc tơ pháp tuyến của \(\left( P \right)\)?
Mặt phẳng \(\left( P \right):ax + by + cz + d = 0\) có một VTPT là:
Mặt phẳng \(\left( P \right):ax - by - cz - d = 0\) có một VTPT là:
Cho mặt phẳng \(\left( P \right):2x - z + 1 = 0\), tìm một véc tơ pháp tuyến của mặt phẳng \(\left( P \right)\)?
Cho hai mặt phẳng \(\left( P \right):ax + by + cz + d = 0;\) \(\left( Q \right):a'x + b'y + c'z + d' = 0.\) Điều kiện để hai mặt phẳng song song là:
Cho hai mặt phẳng \(\left( P \right):ax + by + cz + d = 0;\) \(\left( Q \right):a'x + b'y + c'z + d' = 0.\) Điều kiện nào sau đây không phải điều kiện để hai mặt phẳng trùng nhau?
Cho hai mặt phẳng \(\left( P \right):ax + by + cz + d = 0;\left( Q \right):a'x + b'y + c'z + d' = 0\). Nếu có \(\dfrac{a}{{a'}} \ne \dfrac{b}{{b'}}\) thì ta kết luận được:
Cho hai mặt phẳng \(\left( P \right):ax + by + cz + d = 0;\left( Q \right):a'x + b'y + c'z + d' = 0\). Nếu có \(\dfrac{a}{{a'}} = \dfrac{b}{{b'}} = \dfrac{c}{{c'}}\) thì:
Cho mặt phẳng \(\left( P \right):ax + by + cz + d = 0\). Khoảng cách từ điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right)\) là:
Cho điểm \(M\left( {1;2;0} \right)\) và mặt phẳng \(\left( P \right):x - 3y + z = 0\). Khoảng cách từ \(M\) đến \(\left( P \right)\) là:
Cho mặt phẳng \(\left( P \right):x - y + z = 1,\left( Q \right):x + z + y - 2 = 0\) và điểm \(M\left( {0;1;1} \right)\). Chọn kết luận đúng:
Cho hai mặt phẳng \(\left( P \right):ax + by + cz + d = 0;\) \(\left( Q \right):a'x + b'y + c'z + d' = 0.\) Công thức tính cô sin của góc giữa hai mặt phẳng là:
Cho \(\alpha ,\beta \) lần lượt là góc giữa hai véc tơ pháp tuyến bất kì và góc giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\). Chọn nhận định đúng:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2{\rm{x}} - y + z - 1 = 0\) . Điểm nào dưới đây thuộc \(\left( P \right)\)