Đề bài

Cho hình chữ nhật $ABCD$ biết $AB = 4a$ và $AD = 3a$ thì độ dài \(\overrightarrow {AB} + \overrightarrow {AD} \) là:

  • A.

    $7a$.  

  • B.

    $6a$.

  • C.

    \(2a\sqrt 3 \).

  • D.

    \(5a\).

Phương pháp giải

- Dùng quy tắc hình bình hành để tìm véc tơ tổng \(\overrightarrow {AB}  + \overrightarrow {AD} \).

- Tính độ dài véc tơ tìm được ở trên rồi kết luận.

Lời giải của GV Loigiaihay.com

Áp dụng quy tắc hình bình hành ta có:

\(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \) \( \Rightarrow \left| {\overrightarrow {AB}  + \overrightarrow {AD} } \right| = \left| {\overrightarrow {AC} } \right| = AC\)

\(A{C^2} = A{B^2} + B{C^2}\) \( = {\left( {4a} \right)^2} + {\left( {3a} \right)^2} = {\left( {5a} \right)^2}\) \( \Rightarrow AC = 5a\)

Vậy \(\left| {\overrightarrow {AB}  + \overrightarrow {AD} } \right| = 5a\)

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Cho các điểm phân biệt \(A,B,C\). Đẳng thức nào sau đây đúng ?

Xem lời giải >>
Bài 2 :

Cho hình bình hành ABCD với giao điểm hai đường chéo là I. Khi đó:

Xem lời giải >>
Bài 3 :

Chọn khẳng định đúng:

Xem lời giải >>
Bài 4 :

Chọn khẳng định sai

Xem lời giải >>
Bài 5 :

Cho hình bình hành \(ABCD\) tâm \(O\). Khi đó \(\overrightarrow {OA} + \overrightarrow {BO}  = \)

Xem lời giải >>
Bài 6 :

Cho tam giác đều $ABC$ cạnh $a$. Khi đó $\left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| bằng $

Xem lời giải >>
Bài 7 :

Cho 6 điểm $A,B,C,D,E,F$. Đẳng thức nào sau đây đúng.

Xem lời giải >>
Bài 8 :

Gọi \(G\) là trọng tâm tam giác vuông$ABC$với cạnh huyền $BC = 12$. Tổng hai vectơ $\overrightarrow {GB} + \overrightarrow {GC} $ có độ dài bằng bao nhiêu ?

Xem lời giải >>
Bài 9 :

Cho hình thoi $ABCD$ tâm $O$, cạnh bằng \(a\) và góc \(A\) bằng \({60^0}\). Kết luận nào sau đây đúng:

Xem lời giải >>
Bài 10 :

Cho tam giác $ABC$. Gọi $M,N,P$ lần lượt là trung điểm các cạnh $AB,AC,BC$. Hỏi $\overrightarrow {MP} + \overrightarrow {NP} $ bằng vec tơ nào?

Xem lời giải >>
Bài 11 :

Cho hình vuông $ABCD$ cạnh $a$, tâm $O$. Khi đó: $\left| {\overrightarrow {OA} + \overrightarrow {OB} } \right| = $

Xem lời giải >>
Bài 12 :

Cho lục giác đều $ABCDEF$ và \(O\) là tâm của nó. Đẳng thức nào dưới đây là đẳng thức sai?

Xem lời giải >>
Bài 13 :

Cho \(\Delta ABC\) vuông tại \(A\) và \(AB = 3\), \(AC = 4\). Véctơ \(\overrightarrow {CB} + \overrightarrow {AB} \) có độ dài bằng

Xem lời giải >>
Bài 14 :

Cho tam giác \(ABC\). Để điểm \(M\) thoả mãn điều kiện \(\overrightarrow {MA} + \overrightarrow {BM}  + \overrightarrow {MC}  = \overrightarrow 0 \) thì \(M\) phải thỏa mãn mệnh đề nào?

Xem lời giải >>
Bài 15 :

Cho hình thang $ABCD$ có \(AB\) song song với \(CD\). Cho $AB = 2a;CD = a$. Gọi \(O\) là trung điểm của \(AD\). Khi đó :

Xem lời giải >>
Bài 16 :

Cho tam giác đều\(ABC\) cạnh \(a\), trọng tâm là \(G\). Phát biểu nào là đúng?

Xem lời giải >>
Bài 17 :

Cho hình vuông \(ABCD\) có cạnh bằng \(a\). Khi đó \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|\) bằng:

Xem lời giải >>
Bài 18 :

Cho tam giác $ABC$. Tập hợp những điểm \(M\) sao cho: \(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right| = \left| {\overrightarrow {MC}  + \overrightarrow {MB} } \right|\) là:

Xem lời giải >>