Bài 2 trang 42 SGK Đại số 10


Xác định a, b để đồ thị của hàm số y = ax + b đi qua các điểm.

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Xác định \(a, b\) để đồ thị của hàm số \(y = ax + b\) đi qua các điểm.

LG a

\(A(0; 3)\) và \(B=(\frac{3}{5};0)\);

Phương pháp giải:

B1. Thay toạ độ điểm A vào ta đc:\(y_A=a.x_A+b\); toạ độ điểm B vào ta đc pt:\(y_B=a.x_B+b\)

B2. Giải hệ pt suy ra a,b rồi KL phương trình đường thẳng

Lời giải chi tiết:

A thuộc ĐTHS y=ax+b nên 3 = a.0 + b (1)

B thuộc ĐTHS y=ax+b nên 0 = a.3/5 + b (2)

Từ (1) và (2) ta có hệ phương trình: \(\left\{\begin{matrix} 3=a.0 + b\\ 0=a.\frac{3}{5}+b \end{matrix}\right.\)

\(\Leftrightarrow \left\{ \begin{array}{l}
b = 3\\
\frac{3}{5}a + 3 = 0
\end{array} \right.\)

\(\Leftrightarrow \left\{\begin{matrix} a=-5\\ b=3 \end{matrix}\right.\)

Vậy phương trình của đường thẳng đi qua \(A(0; 3)\) và \(B=\left (\frac{3}{5};0 \right )\) là: \(y = - 5x + 3\).

Cách trình bày khác:

A(0;3) thuộc đồ thị hàm số y = ax + b ⇒ 3 = a.0 + b ⇒ b = 3.

B (3/5; 0) thuộc đồ thị hàm số y = ax + b ⇒ 0 = a.3/5 + 3 ⇒ a = –5.

Vậy a = –5; b = 3.

LG b

\(A(1; 2)\) và \(B(2; 1)\);

Phương pháp giải:

B1. Thay toạ độ điểm A vào ta đc:\(y_A=a.x_A+b\); toạ độ điểm B vào ta đc pt:\(y_B=a.x_B+b\)

B2. Giải hệ pt suy ra a,b rồi KL phương trình đường thẳng

Lời giải chi tiết:

A(1; 2) thuộc đồ thị hàm số y = ax + b ⇒ 2 = a.1 + b (1)

B (2; 1) thuộc đồ thị hàm số y = ax + b ⇒ 1 = 2.a + b (2)

Từ (1) và (2) ta có hệ:

\(\left\{\begin{matrix} 2=a.1 + b\\ 1=a.2+b \end{matrix}\right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}
a + b = 2\\
2a + b = 1
\end{array} \right.\)

\(\Leftrightarrow \left\{\begin{matrix} a=-1\\ b=3 \end{matrix}\right.\)

Phương trình đường thẳng cần tìm là: \(y=-x+3\)

Cách trình bày khác:

A(1; 2) thuộc đồ thị hàm số y = ax + b ⇒ 2 = a.1 + b ⇒ b = 2 – a (1)

B (2; 1) thuộc đồ thị hàm số y = ax + b ⇒ 1 = 2.a + b (2)

Thay (1) vào (2) ta được: 2a + 2 – a = 1 ⇒ a = –1 ⇒ b = 2 – a = 3.

Vậy a = –1; b = 3.

LG c

\(A(15;- 3)\) và \(B(21;- 3)\).

Phương pháp giải:

B1. Thay toạ độ điểm A vào ta đc:\(y_A=a.x_A+b\); toạ độ điểm B vào ta đc pt:\(y_B=a.x_B+b\)

B2. Giải hệ pt suy ra a,b rồi KL phương trình đường thẳng

Lời giải chi tiết:

A(15; –3) thuộc đồ thị hàm số y = ax + b ⇒ –3 = 15.a + b (1)

B (21; –3) thuộc đồ thị hàm số y = ax + b ⇒ –3 = 21.a + b (2)

Từ (1) và (2) ta có hệ:

\(\left\{\begin{matrix} -3=a.15 + b\\ -3=a.21+b \end{matrix}\right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}
15a + b = - 3\\
21a + b = - 3
\end{array} \right.\)

\(\Leftrightarrow \left\{\begin{matrix} a=0\\ b=-3 \end{matrix}\right.\)

Phương trình đường thẳng cần tìm là: \(y=-3\)

Cách trình bày khác:

A(15; –3) thuộc đồ thị hàm số y = ax + b ⇒ –3 = 15.a + b ⇒ b = –3 – 15.a (1)

B (21; –3) thuộc đồ thị hàm số y = ax + b ⇒ –3 = 21.a + b ⇒ b = –3 – 21.a (2)

Từ (1) và (2) suy ra –3 – 15.a = –3 – 21.a ⇒ a = 0 ⇒ b = –3.

Vậy a = 0; b = –3.

Loigiaihay.com


Bình chọn:
4.4 trên 69 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!