Giải mục 2 trang 38 SGK Toán 8 tập 1 - Kết nối tri thức


Với hai số (a,b) bất kì, viết (a - b = a + left( { - b} right)) và áp dụng hằng đẳng thức lập phương của một tổng để tính ({a^3} + left( { - {b^3}} right)). Từ đó rút ra liên hệ giữa ({a^3} - {b^3}) và (left( {a - b} right)left( {{a^2} + ab + {b^2}} right)).

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

HĐ2

Video hướng dẫn giải

Với hai số \(a,b\) bất kì, viết \(a - b = a + \left( { - b} \right)\) và áp dụng hằng đẳng thức lập phương của một tổng để tính \({a^3} + \left( { - {b^3}} \right)\).

Từ đó rút ra liên hệ giữa \({a^3} - {b^3}\) và \(\left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\).

Phương pháp giải:

Sử dụng hằng đẳng thức \({A^3} + {B^3} = \left( {A + B} \right)\left( {A - AB + {B^2}} \right)\)

Lời giải chi tiết:

\({a^3} + \left( { - {b^3}} \right) = \left[ {a + \left( { - b} \right)} \right]\left[ {{a^2} - a.\left( { - b} \right) + {{\left( { - b} \right)}^2}} \right] = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)

Từ đó ta có \({a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)

Luyện tập 2

Video hướng dẫn giải

  1. Viết đa thức \({x^3} - 8\) dưới dạng tích.
  2. Rút gọn biểu thức \(\left( {3x - 2y} \right)\left( {9{x^2} + 6xy + 4{y^2}} \right) + 8{y^3}\)

Phương pháp giải:

Sử dụng hằng đẳng thức \({A^3} - {B^3} = \left( {A - B} \right)\left( {A + AB + {B^2}} \right)\)

Lời giải chi tiết:

  1. \({x^3} - 8 = {x^3} - {2^3} = \left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)\)
  2.  

\(\begin{array}{l}\left( {3x - 2y} \right)\left( {9{x^2} + 6xy + 4{y^2}} \right) + 8{y^3}\\ = \left( {3x - 2y} \right)\left[ {{{\left( {3x} \right)}^2} + 3x.2y + {{\left( {2y} \right)}^2}} \right] + 8{y^3}\\ = {\left( {3x} \right)^3} - {\left( {2y} \right)^3} + 8{y^3}\\ = 27{x^3} - 8{y^3} + 8{y^3}\\ = 27{x^3}\end{array}\)

Vận dụng

Video hướng dẫn giải

Giải quyết tình huống mở đầu.

Phương pháp giải:

Sử dụng hằng đẳng thức \({A^3} + {B^3} = \left( {A + B} \right)\left( {{A^2} - AB + {B^2}} \right)\)

Lời giải chi tiết:

\({x^6} + {y^6} = {\left( {{x^2}} \right)^3} + {\left( {{y^2}} \right)^3} = \left( {{x^2} + {y^2}} \right)\left[ {{{\left( {{x^2}} \right)}^2} - {x^2}.{y^2} + {{\left( {{y^2}} \right)}^2}} \right] = \left( {{x^2} + {y^2}} \right)\left( {{x^4} - {x^2}{y^2} + {y^4}} \right)\)


Bình chọn:
4.1 trên 9 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí