Giải mục 1 trang 36, 37 SGK Toán 8 tập 1 – Chân trời sáng tạo>
Một tấm bạt lớn hình chữ nhật có chiều dài (a) (m), chiều rộng (b) (m) được ghép bởi các tấm bạt bé hình chữ nhật có chiều dài và chiều rộng đều bằng (dfrac{1}{k}) chiều dài, chiều rộng của tấm bạt lớn. Tính diện tích của mỗi tấm bạt bé theo (a), (b) và (k).
HĐ1
Video hướng dẫn giải
Một tấm bạt lớn hình chữ nhật có chiều dài \(a\) (m), chiều rộng \(b\) (m) được ghép bởi các tấm bạt bé hình chữ nhật có chiều dài và chiều rộng đều bằng \(\dfrac{1}{k}\) chiều dài, chiều rộng của tấm bạt lớn. Tính diện tích của mỗi tấm bạt bé theo \(a\), \(b\) và \(k\).
Phương pháp giải:
Sử dụng công thức tính diện tích hình chữ nhật
Lời giải chi tiết:
Chiều dài tấm bạt bé là: \(a.\dfrac{1}{k} = \dfrac{a}{k}\) (m)
Chiều rộn tấm bạt bé là: \(b.\dfrac{1}{k} = \dfrac{b}{k}\) (m)
Diện tích của mỗi tấm bạt bé là: \(\dfrac{a}{k} \cdot \dfrac{b}{k} = \dfrac{{ab}}{{{k^2}}}\) (\({m^2}\))
TH 1
Video hướng dẫn giải
Tính:
a) \(\dfrac{{3{a^2}}}{{10{b^3}}} \cdot \dfrac{{15b}}{{9{a^4}}}\) b) \(\dfrac{{x - 3}}{{{x^2}}} \cdot \dfrac{{4x}}{{{x^2} - 9}}\)
c) \(\dfrac{{{a^2} - 6a + 9}}{{{a^2} + 3a}} \cdot \dfrac{{2a + 6}}{{a - 3}}\) d) \(\dfrac{{x + 1}}{x} \cdot \left( {x + \dfrac{{2 - {x^2}}}{{{x^2} - 1}}} \right)\)
Phương pháp giải:
Tìm ĐKXĐ
Sử dụng quy tắc nhân đa hai phân thức
Lời giải chi tiết:
a) ĐKXĐ: \(a,b \ne 0\)
\(\dfrac{{3{a^2}}}{{10{b^3}}} \cdot \dfrac{{15b}}{{9{a^4}}}\) \( = \dfrac{{3{a^2}.15b}}{{10{b^3}.9{a^4}}} = \dfrac{{45{a^2}b}}{{90{a^4}{b^3}}} = \dfrac{1}{{2{a^2}{b^2}}}\)
b) ĐKXĐ: \(x \ne 0;\;x \ne \pm 3\)
\(\dfrac{{x - 3}}{{{x^2}}} \cdot \dfrac{{4x}}{{{x^2} - 9}}\) \( = \dfrac{{\left( {x - 3} \right).4x}}{{{x^2}.\left( {{x^2} - 9} \right)}} = \dfrac{{\left( {x - 3} \right).4x}}{{{x^2}\left( {x - 3} \right)\left( {x + 3} \right)}} = \dfrac{4}{{x\left( {x + 3} \right)}}\)
c) ĐKXĐ: \(x \ne 0;x \ne \pm 3\)
\(\dfrac{{{a^2} - 6a + 9}}{{{a^2} + 3a}} \cdot \dfrac{{2a + 6}}{{a - 3}}\) \( = \dfrac{{{{\left( {a - 3} \right)}^2}.2.\left( {a + 3} \right)}}{{a.\left( {a + 3} \right).\left( {a - 3} \right)}} = \dfrac{{2\left( {a - 3} \right)}}{a}\)
d) ĐKXĐ: \(x \ne 0;x \ne 1\)
\(\dfrac{{x + 1}}{x} \cdot \left( {x + \dfrac{{2 - {x^2}}}{{{x^2} - 1}}} \right)\) \( = \dfrac{{x + 1}}{x} \cdot \left[ {\dfrac{{x\left( {{x^2} - 1} \right)}}{{{x^2} - 1}} + \dfrac{{2 - {x^2}}}{{{x^2} - 1}}} \right] = \dfrac{{x + 1}}{x} \cdot \left[ {\dfrac{{{x^3} - x + 2 - {x^2}}}{{{x^2} - 1}}} \right]\) \( = \dfrac{{x + 1}}{x} \cdot \dfrac{{{x^3} - {x^2} - x + 2}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)\( = \dfrac{{{x^3} - {x^2} - x + 2}}{{x\left( {x - 1} \right)}}\)
- Giải mục 2 trang 37, 38 SGK Toán 8 tập 1 – Chân trời sáng tạo
- Giải Bài 1 trang 39 SGK Toán 8 tập 1 – Chân trời sáng tạo
- Giải Bài 2 trang 39 SGK Toán 8 tập 1 – Chân trời sáng tạo
- Giải Bài 3 trang 39 SGK Toán 8 tập 1 – Chân trời sáng tạo
- Giải Bài 4 trang 39 SGK Toán 8 tập 1 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Xác suất lí thuyết và xác suất thực nghiệm SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Mô tả xác suất bằng tỉ số SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Hai hình đồng dạng SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Xác suất lí thuyết và xác suất thực nghiệm SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Mô tả xác suất bằng tỉ số SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Hai hình đồng dạng SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác SGK Toán 8 - Chân trời sáng tạo