Giải câu hỏi trắc nghiệm trang 29 sách bài tập toán 8 - Kết nối tri thức với cuộc sống>
Chọn một phương án đúng trong mỗi câu sau:
Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên
Chọn một phương án đúng trong mỗi câu sau:
Câu 1
Trong các đẳng thức sau, cái nào là hằng đẳng thức
A.\(a\left( {a + 1} \right) = a + 1\)
B.\({a^2} - 1 = a\).
C.\(\left( {a + b} \right)\left( {a - b} \right) = {a^2} + {b^2}\)
D.\(\left( {a + 1} \right)\left( {a + 2} \right) = {a^2} + 3a + 2\).
Phương pháp giải:
Hằng đẳng thức là đẳng thức mà hai vế luôn cùng nhận một giá trị khi thay các chữ trong đẳng thức bằng các số tùy ý.
Lời giải chi tiết:
Ta có: \(\;\left( {a + 1} \right)\left( {a + 2} \right) = {a^2}\; + 2a + a + 2 = {a^2}\; + 3a + 2.\)
Do đó đẳng thức trên là một đẳng thức.
Các đẳng thức còn lại, khi thay một giá trị a, b bất kì vào hai vế ta được kết quả không bằng nhau nên không phải là hằng đẳng thức.
Chọn đáp án D.
Câu 2
Đa thức \({x^3} - 8\) được phân tích thành tích của hai đa thức
A.\(x - 2\) và \({x^2} - 2x - 4\)
B. \(x - 2\) và \({x^2} + 2x - 4\)
C. \(x - 2\) và \({x^2} + 2x + 4\)
D. \(x - 2\) và \({x^2} - 2x + 4\)
Phương pháp giải:
Sử dụng hằng đẳng thức
\({a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\).
Lời giải chi tiết:
Ta có: \({x^3}\;-8 = {x^3} - {2^3}\; = \left( {x - 2} \right)({x^2}\; + 2x + 4).\)
Chọn đáp án C.
Câu 3
Biểu thức \({x^2} + x + \frac{1}{4}\) viết được dưới dạng bình phương của một tổng là
A.\({\left[ {x + \left( { - \frac{1}{2}} \right)} \right]^2}\).
B.\({\left( {x + \frac{1}{2}} \right)^2}\).
C.\({\left( {2x + \frac{1}{2}} \right)^2}\)
D.\({\left( {\frac{1}{2}x + 1} \right)^2}\)
Phương pháp giải:
Sử dụng hằng đẳng thức
\({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\).
Lời giải chi tiết:
Ta có: \({x^2} + x + \frac{1}{4} = {x^2} + 2.x.\frac{1}{2} + {\left( {\frac{1}{2}} \right)^2} = {\left( {x + \frac{1}{2}} \right)^2}\).
Chọn đáp án B.
Câu 4
Khẳng định nào sau đây là đúng?
A. \(\left( {A - B} \right)\left( {{A^2} - AB + {B^2}} \right) = {A^3} - {B^3}\).
B. \(\left( {A + B} \right)\left( {{A^2} + AB + {B^2}} \right) = {A^3} + {B^3}\).
C. \(\left( {A + B} \right)\left( {{A^2} - AB + {B^2}} \right) = {A^3} - {B^3}\).
D. \(\left( {A + B} \right)\left( {{A^2} - AB + {B^2}} \right) = {A^3} + {B^3}\).
Phương pháp giải:
Ta sử dụng các hằng đẳng thức:
\({A^3}\; + {B^3}\; = \left( {A + B} \right)({A^2}\;-AB + {B^2})\);
\({A^3}\;-{B^3}\; = \left( {A-B} \right)({A^2}\; + AB + {B^2}).\)
Lời giải chi tiết:
Ta có:
\({A^3}\; + {B^3}\; = \left( {A + B} \right)({A^2}\;-AB + {B^2})\);
\({A^3}\;-{B^3}\; = \left( {A-B} \right)({A^2}\; + AB + {B^2}).\)
Chọn đáp án D.
Câu 5
Rút gọn biểu thức \(\left( {x + 1} \right)\left( {x - 1} \right) - \left( {x + 2} \right)\left( {x - 2} \right)\) ta được
A. 5.
B. 4.
C. 3.
D. -3.
Phương pháp giải:
Sử dụng hằng đẳng thức
\({a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\)
Sử dụng tính chất giao hoán, kết hợp thu gọn các đơn thức đồng dạng với nhau.
Lời giải chi tiết:
Ta có: \(\left( {x + 1} \right)\left( {x - 1} \right) - \left( {x + 2} \right)\left( {x - 2} \right)\)
\( = {x^2}\; - 1 - ({x^2}\; - {2^2}) = \;{x^2} - 1 - {x^2}\; + 4 = 3\).
Chọn đáp án C.
- Giải bài 2.19 trang 29 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 2.20 trang 30 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 2.21 trang 30 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 2.22 trang 30 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 2.23 trang 30 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 16 trang 83 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 15 trang 83 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 14 trang 83 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 13 trang 82 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 12 trang 82 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 16 trang 83 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 15 trang 83 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 14 trang 83 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 13 trang 82 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
- Giải bài 12 trang 82 sách bài tập toán 8 - Kết nối tri thức với cuộc sống