Giải bài 2.20 trang 30 sách bài tập toán 8 - Kết nối tri thức với cuộc sống


Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x.

Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x.

a) \({\left( {x + 1} \right)^{3\;}}-{\left( {x-1} \right)^3}\;-6{x^2}\);

b)  \({\left( {2x-3} \right)^2}\; + {\left( {2x + 3} \right)^2}\;-2\left( {2x-3} \right)\left( {2x + 3} \right)\);

c) \(\;\left( {x-3} \right)({x^2}\; + 3x + 9)-\left( {x + 2} \right)({x^2}\;-2x + 4).\)

Phương pháp giải - Xem chi tiết

Sử dụng các hằng đẳng thức

\({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\);

\({\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\);

\({\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\);

\({\left( {a - b} \right)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\);

\({a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)\);

\({a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\);

Lời giải chi tiết

a) Ta có \({\left( {x + 1} \right)^{3\;}}-{\left( {x-1} \right)^3}\;-6{x^2}\)

\( = {x^3}\; + 3{x^2}\; + 3x + 1 - ({x^3}\; - 3{x^2}\; + 3x - 1) - 6{x^2}\)

\( = {x^3}\; + 3{x^2}\; + 3x + 1 - {x^3}\; + 3{x^2}\; - 3x + 1 - 6{x^2}\)

\( = ({x^3} - {x^3}) + (3{x^2}\; + 3{x^{2\;}} - 6{x^2}) + \left( {3x - 3x} \right) + 1 + 1\)

\( = 2.\)

Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến x.

b) Ta có:

\({\left( {2x-3} \right)^2}\; + {\left( {2x + 3} \right)^2}\;-2\left( {2x-3} \right)\left( {2x + 3} \right)\)

\( = {\left( {2x-3} \right)^2}\;-2.\left( {2x-3} \right).\left( {2x + 3} \right) + {\left( {2x + 3} \right)^2}\)

\( = {\left[ {2x-3-\left( {2x + 3} \right)} \right]^2}\)

\( = {\left( {2x-3-2x-3} \right)^2}\)

\( = {\left( {-6} \right)^2}\; = 36\).

Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến x.

c) Ta có:

\(\;\left( {x-3} \right)({x^2}\; + 3x + 9)-\left( {x + 2} \right)({x^2}\;-2x + 4)\)

\( = \left( {x-3} \right)({x^2}\; + 3x + {3^2})-\left( {x + 2} \right)({x^2}\;-2x + {2^2})\)

\( = {x^3}\; - {3^3}\; - ({x^3}\; + {2^3})\)

\( = {x^3}\; - 27 - {x^3}\; - 8\)

\( = ({x^3}\; - {x^3}) - 27 - 8 =  - 35.\)

Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến x.


Bình chọn:
4.2 trên 14 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí