Giải bài tập 31 trang 93 SGK Toán 12 tập 2 - Kết nối tri thức>
Trong một tuần, Sơn chọn ngẫu nhiên ba ngày chạy bộ buổi sáng. Nếu chạy bộ thì xác suất Sơn ăn thêm 1 quả trứng vào bữa sáng hôm đó là 0,7. Nếu không chạy bộ thì xác suất Sơn ăn thêm một quả trứng vào bữa sáng hôm đó là 0,25. Chọn ngẫu nhiên một ngày trong tuần của Sơn. Tính xác suất để hôm đó Sơn chạy bộ nếu biết rằng sáng hôm đó Sơn có ăn thêm một quả trứng.
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Trong một tuần, Sơn chọn ngẫu nhiên ba ngày chạy bộ buổi sáng. Nếu chạy bộ thì xác suất Sơn ăn thêm 1 quả trứng vào bữa sáng hôm đó là 0,7. Nếu không chạy bộ thì xác suất Sơn ăn thêm một quả trứng vào bữa sáng hôm đó là 0,25. Chọn ngẫu nhiên một ngày trong tuần của Sơn. Tính xác suất để hôm đó Sơn chạy bộ nếu biết rằng sáng hôm đó Sơn có ăn thêm một quả trứng.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về công thức xác suất toàn phần để tính: Cho hai biến cố A và B. Khi đó, ta có công thức sau: \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\).
Sử dụng kiến thức về công thức Bayes để tính: Cho A và B là hai biến cố, với \(P\left( B \right) > 0\). Khi đó, ta có công thức sau: \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}}\).
Lời giải chi tiết
Gọi A là biến cố: “Sơn chạy bộ hôm đó”, B là biến cố: “Sơn có ăn thêm một quả trứng”.
Theo đầu bài ta có: \(P\left( {B|A} \right) = 0,7,P\left( {B|\overline A } \right) = 0,25,P\left( A \right) = \frac{3}{7} \Rightarrow P\left( {\overline A } \right) = \frac{4}{7}\)
Theo công thức xác suất toàn phần ta có:
\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = \frac{3}{7}.0.7 + \frac{4}{7}.0,25 = \frac{{31}}{{70}}\)
Do đó, \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{\frac{3}{7}.0,7}}{{\frac{{31}}{{70}}}} = \frac{{21}}{{31}}\)
Vậy xác suất để hôm đó Sơn chạy bộ nếu biết rằng sáng hôm đó Sơn có ăn thêm một quả trứng là \(\frac{{21}}{{31}}\).
- Giải bài tập 5.50 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 30 trang 93 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 29 trang 93 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 27 trang 93 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 26 trang 93 SGK Toán 12 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức