Giải bài tập 1.39 trang 47 SGK Toán 12 tập 1 - Cùng khám phá


Một cổng vòm có dạng nửa hình tròn trên mặt đất với bán kính R=5 m. Người ta muốn đặt một khung hình chữ nhật ABCD để thiết kế trang trí, với hai điểm A,B đính trên vòm và CD đặt trên mặt đất (Hình 1.68). Tìm khoảng cách A,B so với mặt đất để diện tích hình chữ nhật ABCD là lớn nhất.

Đề bài

Một cổng vòm có dạng nửa hình tròn trên mặt đất với bán kính R=5 m. Người ta muốn đặt một khung hình chữ nhật ABCD để thiết kế trang trí, với hai điểm A,B đính trên vòm và CD đặt trên mặt đất (Hình 1.68). Tìm khoảng cách A,B so với mặt đất để diện tích hình chữ nhật ABCD là lớn nhất.

Phương pháp giải - Xem chi tiết

- Đặt y (m) là khoảng cách từ AB đến mặt đất. Vì A và B nằm trên vòm nửa hình tròn có bán kính R=5 m, nên tọa độ của A và B có thể biểu diễn dưới dạng (x,y).

- Tìm phương trình đường tròn và tính diện tích S của hình chữ nhật ABCD.

- Biểu diễn S dưới dạng một hàm của y và cực đại hóa S bằng cách tìm đạo hàm.

Lời giải chi tiết

Gọi y (m) là khoảng cách từ A và B đến mặt đất (y>0).

Vì A và B nằm trên nửa hình tròn có tâm tại gốc tọa độ (0,0) và bán kính R=5 m, tọa độ của chúng thỏa mãn phương trình đường tròn:

\({x^2} + {y^2} = 25\)

Giả sử A có toạ độ \(( - x,y)\) và B có toạ độ \((x,y)\).

Chiều dài AB là: \(\sqrt {{{( - x - x)}^2} + {{(y - y)}^2}}  = 2x\)

Diện tích hình chữ nhật ABCD là: \(S = AB.AD = 2xy\)

Thay \(x = \sqrt {25 - {y^2}} \) vào biểu thức diện tích ta được: \(S = 2\sqrt {25 - {y^2}} .y\)

Đạo hàm của S theo y: \(\)\(S' = 2\left( {\sqrt {25 - {y^2}}  + y.\frac{{ - y}}{{\sqrt {25 - {y^2}} }}} \right) = 2\left( {\frac{{25 - {y^2} - {y^2}}}{{\sqrt {25 - {y^2}} }}} \right) = 2\left( {\frac{{25 - 2{y^2}}}{{\sqrt {25 - {y^2}} }}} \right)\)

Đặt đạo hàm bằng 0, ta có: \(S' = 0 \Leftrightarrow 25 - 2{y^2} = 0 \Leftrightarrow 2{y^2} = 25 \Rightarrow y = \frac{{5\sqrt 2 }}{2}\)

Đạo hàm cấp 2 của S:

\(\begin{array}{l}S'' = 2.\frac{{ - 4y.\sqrt {25 - {y^2}}  + (25 - 2{y^2})\frac{y}{{\sqrt {25 - {y^2}} }}}}{{25 - {y^2}}}\\ = 2.\frac{{ - 4y\sqrt {25 - {y^2}}  + \frac{{y\left( {25 - 2{y^2}} \right)}}{{\sqrt {25 - {y^2}} }}}}{{25 - {y^2}}}\\ = 2.\frac{{ - 4y\left( {25 - {y^2}} \right) + y\left( {25 - 2{y^2}} \right)}}{{\left( {25 - {y^2}} \right)\sqrt {25 - {y^2}} }}\\ = 2.\frac{{ - 4y\left( {25 - {y^2}} \right) + y\left( {25 - 2{y^2}} \right)}}{{\left( {25 - {y^2}} \right)\sqrt {25 - {y^2}} }}\\ = 2.\frac{{ - 100y + 4{y^3} + 25y - 2{y^3}}}{{\left( {25 - {y^2}} \right)\sqrt {25 - {y^2}} }}\\ = 2.\frac{{ - 75y + 2{y^3}}}{{\left( {25 - {y^2}} \right)\sqrt {25 - {y^2}} }}\end{array}\)

Thay \(y = \frac{{5\sqrt 2 }}{2}\) vào đạo hàm cấp 2 ta được:

\(S''\left( {\frac{{5\sqrt 2 }}{2}} \right) = 2.\frac{{ - 75.\left( {\frac{{5\sqrt 2 }}{2}} \right) + 2{{\left( {\frac{{5\sqrt 2 }}{2}} \right)}^3}}}{{\left( {25 - {{\left( {\frac{{5\sqrt 2 }}{2}} \right)}^2}} \right)\sqrt {25 - {{\left( {\frac{{5\sqrt 2 }}{2}} \right)}^2}} }} =  - 8 < 0\)

Vì giá trị âm nên \(y = \frac{{5\sqrt 2 }}{2}\)là cực đại của hàm S.

Vậy A, B cách mặt đất một khoảng \(y = \frac{{5\sqrt 2 }}{2}\) thì diện tích hình chữ nhật ABCD là lớn nhất.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài tập 1.40 trang 47 SGK Toán 12 tập 1 - Cùng khám phá

    Kính viễn vọng Hubble được tàu không gian Discovery đưa vào sử dụng ngày 24/4/1990. Mô hình vận tốc của tàu trong sứ mệnh này, từ lúc rời bệ phóng (t=0 giây) cho đến khi được tên lửa đẩy nhanh khỏi bệ tại thời điểm t = 126 giây, được xác định bởi công thức: \(v(t) = 0,001302{t^3} - 0,09029{t^2} + 23,61t - 3,083{\rm{ (feet/gi\^a y) }}\) (Nguồn: James Stewart, J. (2015). Calculus. Cengage Learning 8th edition, p. 282). Tính gia tốc lớn nhất và gia tốc nhỏ nhất của tàu trong khoảng thời gian này

  • Giải bài tập 1.41 trang 47 SGK Toán 12 tập 1 - Cùng khám phá

    Hàm số \(y = \frac{{{x^3}}}{3} - 3{x^2} + 5x - 2\) nghịch biến trên khoảng nào dưới đây? A. \((5; + \infty )\). B. \(( - \infty ;1)\). C. \(( - 2;3)\). D. \((1;5)\).

  • Giải bài tập 1.42 trang 48 SGK Toán 12 tập 1 - Cùng khám phá

    Cho hàm số \(y = \frac{{2x - 1}}{{x + 2}}\). Mệnh đề nào sau đây đúng? A. Hàm số đồng biến trên \(( - \infty ; - 2) \cup ( - 2; + \infty )\). B. Hàm số đồng biến trên \(( - \infty ;0)\). C. Hàm số đồng biến trên \(\mathbb{R}\). D. Hàm số đồng biến trên các khoảng \(( - \infty ; - 2)\) và \(( - 2; + \infty )\).

  • Giải bài tập 1.43 trang 48 SGK Toán 12 tập 1 - Cùng khám phá

    Cho hàm số \(y = f(x)\) xác định trên \(\mathbb{R}\) và có bảng biến thiên như Bảng 1.5. Khẳng định nào sau đây đúng?

  • Giải bài tập 1.44 trang 48 SGK Toán 12 tập 1 - Cùng khám phá

    Cho hàm số \(y = \frac{{{x^2} + 7x + 3}}{{{x^2}}}\) có đồ thị là đường cong như Hình 1.70. Đồ thị hàm số đã cho có tất cả bao nhiêu đường tiệm cận? A. 1 . B. 2 . C. 3 . D. 4 .

>> Xem thêm

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí